
A NOVEL SIMILARITY-SEARCH METHOD FOR MATHEMATICAL

CONTENT IN LATEX MARKUP AND ITS IMPLEMENTATION

by

Wei Zhong

A thesis submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Master of Science in Electrical and
Computer Engineering

Summer 2015

c© 2015 Wei Zhong
All Rights Reserved

A NOVEL SIMILARITY-SEARCH METHOD FOR MATHEMATICAL

CONTENT IN LATEX MARKUP AND ITS IMPLEMENTATION

by

Wei Zhong

Approved:
Hui Fang, Ph.D.
Professor in charge of thesis on behalf of the Advisory Committee

Approved:
Kenneth E. Barner, Ph.D.
Chair of the Department of Electrical and Computer Engineering

Approved:
Babatunde A. Ogunnaike, Ph.D.
Dean of the College of Engineering

Approved:
James G. Richards, Ph.D.
Vice Provost for Graduate and Professional Education

ACKNOWLEDGMENTS

Thank you to my family for their support from every perspective through out

my graduate academic education. Thank you to my advisor Hui Fang who offers me

the opportunity to develop my idea further and supports me in many other ways. I

am also grateful to all InfoLab members for their kind help. And thanks to those not

previously mentioned, who have influenced me or helped along the way.

iii

TABLE OF CONTENTS

LIST OF TABLES . vii
LIST OF FIGURES . viii
ABSTRACT . ix

Chapter

1 INTRODUCTION . 1

1.1 Math IR Domains . 1
1.2 Issues in Measuring Similarity . 3
1.3 Contribution Summary . 5

2 RELATED WORK . 6

2.1 Text-Based Methods . 6
2.2 Structure-Based Methods . 7
2.3 Other Related Work . 10
2.4 Performance Review . 10

3 METHODOLOGY . 11

3.1 Intuitions . 11

3.1.1 Commutative Immunity . 12
3.1.2 Sub-Structure Query Ability 12
3.1.3 Index and Search Properties 12

3.2 Structure Similarity . 13

3.2.1 Definitions . 14

3.2.1.1 Formula Tree . 15
3.2.1.2 Formula Subtree . 15

iv

3.2.1.3 Leaf-Root Path Set 15
3.2.1.4 Index . 16

3.2.2 Search Method . 16
3.2.3 Substructure Matching . 17

3.2.3.1 Observation #1 . 17
3.2.3.2 Observation #2 . 18
3.2.3.3 Observation #3 . 18

3.2.4 Interpretation . 19
3.2.5 The Decompose-and-Match Algorithm 21

3.3 Symbolic Similarity . 22

3.3.1 Ranking Constrains . 24
3.3.2 The Mark-and-Cross Algorithm 25

3.4 Combine The Two . 29

3.4.1 Relaxed Structure Match . 29
3.4.2 Matching-Depth . 30
3.4.3 Matching-Ratio . 31
3.4.4 Final Ranking Schema . 31
3.4.5 Illustrated by an Example . 31

4 IMPLEMENTATION AND EVALUATION 36

4.1 System Overview . 36
4.2 Implementation . 37

4.2.1 Crawler . 37
4.2.2 Parser . 37
4.2.3 Index . 39
4.2.4 Search Program . 39
4.2.5 Web Front-End . 40

4.3 Evaluation . 41

4.3.1 Dataset and Index . 42
4.3.2 Relevance Judgement . 42
4.3.3 Results . 43

v

5 CONCLUSION AND FUTURE WORK 47

5.1 Summary and Conclusion . 47
5.2 Current Problems . 48
5.3 Future Work . 48

REFERENCES . 50

Appendix

A GRAMMAR RULES OF PARSER 54
B LEXER TOKENS OF PARSER . 56

vi

LIST OF TABLES

3.1 First two iterations of example score evaluation 34

3.2 3rd iteration of example score evaluation 34

3.3 4th iteration of example score evaluation 35

4.1 Test query set . 41

4.2 Judgement score table . 43

4.3 Relevance score distribution . 44

vii

LIST OF FIGURES

3.1 Leaf-root path example . 13

3.2 Leaf-root paths with different structure 20

3.3 Formula subtree matching . 21

3.4 The decompose-and-match algorithm 23

3.5 The mark-and-cross algorithm . 27

3.6 Example query/document expression representation 32

4.1 Example parser output . 38

4.2 Web front-end . 40

4.3 Effectiveness performance . 45

4.4 Efficiency performance . 46

viii

ABSTRACT

Mathematical content are widely contained by digital document, but major

search engines fail to offer a way to search those structural content effectively, because

traditional IR methods are deficient to capture some important aspects of math lan-

guage. In this paper, we propose a similarity-search method for LATEX math expressions

trying to provide a new idea to better search math content. Our approach uses an in-

termediate tree representation to capture structural information of math expression,

and based on a previous idea, we index math expressions by tree leaf-root paths. A

search method to limit search set for possible subexpression isomorphism is provided.

We rank search results by a few intuitive similarity metres from both structural and

symbolic points of view. We also build our own proof-of-concept prototype search

engine to demonstrate these ideas, and thus are able to present some evaluation re-

sults through this paper. Experiment shows these proposed measurements can advance

effectiveness with respect to our baseline search method.

ix

Chapter 1

INTRODUCTION

Apart from general text content, structured information is also widely contained

by digital document. Among these, a lot of mathematical content are represented, they

are primarily using LATEX, which is a rich structural markup language. Information

Retrieval on those structured data in mathematics language is not as well-studied or

exhaustively covered as that is in general text IR research. To better search mathe-

matical content can be significantly meaningful in terms of extending our border on

information retrieval.

However, the structured sense of mathematical language, as well as many its

semantic properties (see section 1.2), makes general text retrieval models deficient

to provide good search results. This is because some fundamental differences between

mathematical language and general text. Through this paper, we have made our efforts

to tackle some of the problems we are having to search mathematical language. Some

of the ideas used in this paper that deals with ”tree structured” data can be generalized

and potentially applied to other fields of structured data retrieval.

1.1 Math IR Domains

Mathematical information involves a wide spectrum of topics, [1] gives a com-

prehensive review on mathematical IR researches. We are of cause not focusing on

every aspect in mathematical information retrieval. It is good to clarify our concen-

tration in this paper here by first listing a set of concentrations in the related research

area and define our target field of study.

1

Listed here, are considered three major topics for mathematical information

retrieval:

1. Boolean or Similarity Search

2. Math Detection and Recognition

3. Evaluation, Derivation and Calculation

Boolean/Similarity search finds or ranks mathematical expressions against a

query. They define the criteria of matching expressions or dimensions of similarity

between two expressions. This is analogy to the boolean or similarity search of gen-

eral text search engines, except the query and document may contain mathematical

expressions. Some search engines deal with only formula (e.g. SearchOnMath 1, Uni-

quation 2 and Tangent 3) and some math-aware search engines (e.g. WolframAlpha 4

and Zentralblatt math from MathWebSearch 5) are able to search query with mixed

text and mathematical formula. These search engines can be useful in many ways, for

example, student may utilize it to know which identity can be applied to a formulae in

order to give a proof of that formulae. This is the area where we focus in this paper.

Digital mathematical content document can also be in an image format (e.g. a

handwritten formula), topics on retrieving information in these image requires detection

and recognition of their visual features (texture, outline, shape etc.).

Also, because the nature of mathematical language, a query (e.g. an algebra

expression) can potentially derived into alternate forms, or calculated and evaluated

into a value. These potentially require a system to handle symbolic or numeric calcu-

lation, or even a good knowledge of derivation rules implied by different mathematical

1 http://searchonmath.com

2 http://uniquation.com/en

3 http://saskatoon.cs.rit.edu/tangent/random

4 https://www.wolframalpha.com/

5 http://search.mathweb.org/zbl/

2

http://searchonmath.com
http://uniquation.com/en
http://saskatoon.cs.rit.edu/tangent/random
https://www.wolframalpha.com/
http://search.mathweb.org/zbl/

expression. Those numeric search engines (e.g. computational engine Symbolab 6

and WolframAlpha) can help evaluate mathematical expressions and reveal the deeper

information contained from those expressions.

Besides the three concentrations mentioned, there are many other topics. Knowl-

edge mining, for example, will need deeper level of understanding on math language.

A typical goal of this topic is to give a solution or answer based on all the document

information retrieved. e.g. “Find an article related to the Four Color Theorem” [2].

These topics somehow overlap in some cases, for example, some derivation can

be used to better assess the similarity between math formulae, e.g.
a+ b

c
and

a

c
+
b

c
should be considered as relevant because their equivalent form of representation. Sim-

ilarly, mathematical knowledge is required to understand the same meaning (thus high

similarity) between

(
n

1

)
and C1

n. So boolean or similarity search possibly involves a

level of understanding on mathematical language. However, we are not going to include

these problems into our research domain, instead, this paper addresses mathematical

expression similarity from only structural and symbolic perspectives.

1.2 Issues in Measuring Similarity

Unlike general text content, mathematical language, by its nature, has many

differences from other textual documents, there are a number of new problems in

measuring mathematical expression similarity. Even without caring about the possible

derivations and high level knowledge inference, there are still a set of new problems for

measuring mathematical similarity.

Firstly, the differences between mathematical expressions should be captured in

a cooperative manner in order to measure similarity, because only respecting symbolic

information is not sufficient in mathematical language. To illustrate this point, we

know that ax+(b+c) in most cases is not equivalent to (a+b)x+c although they have

the same set of symbols, because the different structure represents a different semantic

meaning. And the order of tokens in math expression can be commutative in some

6 Symbolab Web Search: http://www.symbolab.com

3

http://www.symbolab.com

cases but not always, for example, commutative property in math makes a+b = b+c for

addition operation, but on the other hand
a

b
is most likely not equivalent to

b

a
. These

characteristics make many general text search methods (e.g. bag of words model, tf-idf

weighting) inadequate. Moreover, symbols can be used interchangeably to represent

the same meaning, e.g. a2 + b2 = c2 and x2 + y2 = z2. However, interchanging symbols

does not always preserve mathematical semantics, changes of symbols in expression

preserve more syntactic similarity when changes are made by substitution, e.g. Given

query x(1 + x), expression a(1 + a) are considered more relevant than a(1 + b).

Secondly, how we evaluate structural similarity between expressions is a ques-

tion. A complete query may structurally be a part of a document, or only some parts

of a query match somewhere in a document expression. In cases when a set of matches

occur within some measure of “distance”, we may consider them to contribute sim-

ilarity as a whole, but when matches occur “far away” for a query expression, then

under the semantic implication of mathematics, they probably will not contribute the

similarity degree in any way. We need metrics to score these similarity under certain

rules for relevance assessments.

Lastly, when trying to capture more semantic information from expressions, we

can improve our measurement on similarity but it may introduce more ambiguity. For

example, semantically incorrect math markups in document, e.g. using “sin” in LATEX

markup instead of macro “\sin”, will make it difficult to tell whether it is a product

of three variables or a sine function if we want to capture their semantical meaning

in such a depth. And depending on what level of semantical meaning we want to

capture, ambiguity cases can be different. Consider f(2x+ 1), if we want to know if f

is a function rather than a variable, the only possibility is looking for its contexts, but

we can nevertheless always think of it as a product without losing the possibility to

search similar expression like f(1 + 2y), the same way goes reciprocal a−1 and inverse

function f−1. Most often, even if no semantic ambiguity occurs, efforts are needed to

capture some semantical meanings. e.g. In sin 2π, it is not easy to figure out, without

a knowledge on trigonometric function convention, that 2π is the subordinative of sine

4

function.

1.3 Contribution Summary

This paper has proposed new ideas to search math expressions in a limited

search set and evaluate both structural and symbolic similarity of two two math ex-

pressions. Based on an existing idea of using leaf-root path (which will be described at

section 2.2) to search mathematical expressions, we have further developed it to index

structural information for easy discover of structurally similar document expressions.

To summarize, the research presented contributes the following points to the field of

mathematical information retrieval.

• The method based on operation tree representation of mathematical expression
to index information by sub-paths and search math query through simultane-
ously merging sub-paths. This also enables the ability to prune search set and
potentially provide ways to parallelize search process.

• Formally defined sub-expression relation between two mathematical expressions.
Based on this definition, we have observed some interesting properties, and de-
pending on this, we have proposed a new search method which can limit the
indexed expressions being possible sub-expression of query to a subset of index.

• An algorithm to “check” defined sub-expression relation between two mathemat-
ical expressions.

• An algorithm to evaluate symbolic similarity between two mathematical expres-
sions with consideration of symbol α-equality.

• Propose a ranking schema to combine three factors (matching ratio, matching
depth, and symbolic similarity score) as a tuple to score overall similarity between
a query and a document math expression.

• A parser to directly parse LATEX math mode content into in-memory operation
tree representation, omitting semantic-irrelevant content.

• A set of tools that implement our idea with source code avaiable online: https:
//bitbucket.org/t-k-/cowpie. And a newly-assembled corpus from Stack-
Exchange to provide a LATEX (instead of MathML) content dataset for public
assessment and evaluation.

5

https://bitbucket.org/t-k-/cowpie
https://bitbucket.org/t-k-/cowpie

Chapter 2

RELATED WORK

Boolean or similarity search for mathematical content is not a new topic, con-

ference in this topic is getting increasingly research attention and the proposed systems

have progressed considerably [3]. A variety of approaches have already emerged in an

early timeline [4], but we can nevertheless categorize them into a few different ideas.

[5, 6, 7] use the same way to classify them into text-based and tree-based (structure-

based), here we decide to follow the same classification method and give an overview

on those different ideas.

2.1 Text-Based Methods

Many researchers are utilizing existing models to deal with mathematical search,

and use texted-based approaches to capture structural information on top of matured

text search engine and tools (such as Apache Lucene).

DLMF project from NIST [8] uses “flattening process” to convert math to tex-

tualized terms, and normalize them into sorted parse tree normal form which creates

an unique form for all possible orders of nodes among associative and commutative

operators. Then further introduces serialization and scoping to stack terms [9], trying

to capture structure information by using text-IR based systems that supports phrase

search. Similar idea is also used by [10], expressions are also augmented for various

possible representations, variables are further replaced and normalized, but they are

using postfix notation, allows to search subexpressions without knowing the operator

between them. MIaS system [11, 12, 13], like the methods above, are also trying to re-

order commutative operations, normalize variables and constance numbers into unified

6

symbols, doing augmentation in a similar fashion. It indexes expressions and subex-

pressions from all depth levels. The system is able to discriminate and assign different

weight based on their generalization level, and place emphasis on that a match in a

complex expression is assigned higher weight [13].

Augmentation usually consists a storage demand for combination of both sym-

bols (e.g. a and b) and unified items (id, const) in different levels, in order to capture

both symbolic information and structure information. Thus implies complex expres-

sions with many commutative operators will cost inevitably larger storage space, the

benefits of capturing expression variances will be overshadowed.

Although named as structured-based approach, [14] is using longest common

subsequence algorithm to capture structure information (in an unified preprocessed

string and a level string). The method takes O(n2) complexity for comparing a pair of

formulae, and no index method is proposed. Therefore is not feasible to efficiently apply

to a large collection. The Mathdex search engine [15], from another perspective, uses

query likelihood approach [16] to estimate how likely the document will generate the

query expression. Math GO! [17] is another system advances some transitional method

to better search math content. It tries to find all the symbols and map formula pattern

to pattern name keywords (like matrix or root), and proposes to replace term frequency

by co-occurrence of a term with other terms.

2.2 Structure-Based Methods

What text-based methods share in common is they are converting math lan-

guage symbols to linear tokens, the intrinsic defect when using a bag of words to

replace structured information will make conversion process lose considerable informa-

tion or cause storage-inefficiency. In order to cope with the problems from text-based

approach, structure-based methods generally generate intermediate tree structure, and

use these information to index or search.

7

Term indexing

Whelp [18] and MathWebSearch (MWS) directed by Kohlhase [19, 20, 21], are

one of the notable structure-based ones which are derived from automatic theorem

proving and unification theory [22]. The system of MWS uses term indexing [23] in a

substitution tree index [23] to to minimize access time and storage. Because the subex-

pression is not easy to search using substitution tree, MWS indexes all sub-terms, but

the increased index size remains manageable [19]. However, their index relies heavily

on RAM memory, the considerable RAM resource usage (170GB reportedly [21]) makes

it have to scale to accommodate 72% papers on arXiv.

Leaf-root path

[24] uses leaf to root XML path in a MathML object to represent math formula.

When efficiency is considered, it only indexes the first and deepest path (to indicate

how a formula is started and presumably the most characteristic part of a formula);

when user wants to obtain the perfect-match result, it indexes all the MathML object

leaf-root path. The boolean search is performed by giving all the paths match with

those of the search query. [25] further develops with incorporation of previous method

using breath-first search, to add sibling nodes information into index and have achieved

better effectiveness.

Very similar idea is proposed by [26] and used in [27]. The latter transform

MathML to an “apply free” markup from which the leaf-root path are extracted. Leaf-

root path is also used to evaluate similarity between two expressions in MathML.

Symbol layout tree

A symbol layout tree [28] (SLT) or presentation tree [5] describes geometric

layouts of mathematical expression. WikiMirs [5] uses two templates to parse LATEX

markup with two typical operator terms: explicit ones (“\frac”, “\sqrt”, etc.) and

implicit ones (“+”, “÷”, etc.) to form a presentation tree, then extracts original terms

and generalized terms from normalized presentation tree, to provide the flexibility of

8

both fuzzy and exact search. [28] uses symbol layout tree as a kind of substitution

tree, each branch in the tree represents a binding chain for variables, and every child

node is an instance of its parent for a generalized term. They introduce baseline size to

help group similar expressions together in their substitution SLT in order to decrease

tree branch factor, however, this makes a single substitution variable not able to match

multiple terms along the baseline. Also their implementation makes it unable to index

certain formula (e.g. a left-side superscript) and have to generate many queries (e.g.

all possible format variations and sub-expressions etc.) for a single query at the time of

search. Later [6, 29] have developed a symbol pairs idea to capture a relative position

information between symbol pairs. Due to the many possible combinations of symbol

pairs in a complex math expression, the storage cost is intrinsically large. However,

the key-value storage style will be suitable for fast lookup (e.g. HASH).

Other structure-based methods

A novel indexing scheme and lookup algorithm is proposed by [30], its index has

hash signature for each subtree because they have observed a lot of common subtree

structure occur in math formula collection. This idea will result in a slower index

growth. Their lookup algorithm supports wildcards, and performs a boolean match

test. Although their lookup time is generally below 700ms, the index size where query

lookup time is tested is unclear, but presumably no greater than 70,000 expressions.

By constructing a DOM tree, [31] extracts semantic keywords, structure descriptions to

indicate subordinative relationship in a string format. The similarity is calculated using

normalized tf-idf vector (trained by clustering algorithms) by dot product. Although

the final index is generated from text, promising results have been achieved. Tree edit

distance is adopted by [32], it tries to overcome the bad time complexity of original

algorithm by summarizing and using a structure-preserving compromised edit distance

algorithm. Although the result shows query processing time is long but it is reduced

to average 0.8 seconds by applying with an early termination algorithm along with a

distance cache [33].

9

2.3 Other Related Work

There are a number of articles trying to use image to assess math expression

similarity. [34] compares their image-based approach using connected component-based

feature vector with a proposed text-based method, reported precision@k values are low,

but the potential for this method to be combined with shape representations or other

features will potentially improve it and make it valuable for searching mathematical

expressions in image format. [35] uses X-Y tree to cut the page in vertical and horizontal

directions alternatively, in order to retrieve math symbols from images.

A lattice-based approach [36] builds formal concept based on selected feature

sets of each formula. The ranking is calculated by the distances from query in the

lattice map when the query is inserted.

2.4 Performance Review

In the review of many related past research in section 2, we find the combination

of state-of-art general text search engine (i.e. Apache Lucene) with the efforts to aug-

ment expressions by permutation and unification to satisfy the needs of mathematical

search has achieved a good result in different metrics of evaluation: The text-based

system of MIaS over-performs those of structure-based and ranked the first in four out

of six measurement in NTCIR-11 conference [37]. However, structure-based method

such as symbol pairs proposed in [6, 29] also gets a competitive result [37].

Although text-based methods have achieved relatively better effectiveness, their

commonly adoption of augmentation makes it expensive in terms of hardware storage.

On the other hand, structure-based method has the merit to best capture semantic

information of a typical mathematical expression, thus still has the potential to fur-

ther improve effectiveness given the fact that the tools and theory behind test-based

methods are already mature and have been developed for decades.

10

Chapter 3

METHODOLOGY

Our method can be seen as an approach built upon the idea of leaf-root path

or sub-path [26, 24, 27, 25] from an operation tree [1]. But we have developed this

idea further in many ways. Our index is composed from leaf-root paths extracted

from an operation tree, we simultaneously search along the way of all leaf-root paths

from a given query operation tree, which is essentially traversing “reversed” sub-paths.

Searching in this way makes a pruning method possible to limit our search set. We also

propose a sub-structure testing algorithm, which are utilizing some observed properties

from our indexed tree. Apart from these, we provide a symbolic similarity algorithm

to rank α-equivalent expressions higher. The methods in a nutshell is, for a document

expression, construct operation tree, break it down into sub-paths, and index those

paths. For a query, traversal index tree as the same way of going through the reversed

sub-paths of that query operation tree, search the sub-paths and their merged paths

in index meanwhile calculate indexed expression similarity to rank each document

expression.

3.1 Intuitions

First it is beneficial to document our intuitions on using operation tree as our

intermediate representation and our idea to index it in a way of reversed sub-path

tree, and also explain in abstract why this way helps reduce index space and boost

search speed. We will give an illustrative example to describe these processes further

in section 3.4.5.

11

3.1.1 Commutative Immunity

Operators with semantic implication of commutative property (e.g. addition

and multiplication) are exhaustively used in mathematical language. The ability to

identify the identical equations for any permutation is very essential for a mathematical

similarity search engine. Given this as a start point, the leaf-root paths have the

advantage to cope this so that we do not need to generate different order of patterns

to match formulae with commutative operator. To illustrate this, we know that a leaf-

root path from an operation tree (see figure 3.1) is generated through traversing in a

bottom-up (or top-down) fashion from a tree, therefore these sub-paths are independent

to the relative position of commutative operands. In another word, an operation tree

uniquely determines the leaf-node paths decomposed from the tree, no matter how

operands are ordered.

3.1.2 Sub-Structure Query Ability

On the other hand, the structure of operation tree also makes it easy to represent

sub-expression relation with a formula, because a sub-expression in a formula is usually

(depending on the way we construct an operation tree) also a subtree in an operation

tree. And by going up from leaves of operation tree, we are essentially traversing

to an expression from its subexpression for every level. By making all the leaf-root

paths as an index, we can search an expression by going through and beyond the

leaf-root paths from its subexpression. This makes operation tree better in terms of

searching an expression given a sub-expression of it in query. And it avoids information

augmentation on index as some other structure-based methods need (e.g. index all sub-

terms of an expression in MWS [19]). Therefore it also helps save storage space.

3.1.3 Index and Search Properties

Additionally, some properties from this method suggest some reduce of space

and pruning possibilities in search process. First the sub-paths themselves can be

indexed into a tree so that we can search a sub-path by traversing a sub-path tree,

12

a

b c

+

×

a(b+ c) in operation tree

a

b c

+ +

× × ×

Generated leaf-root paths

Figure 3.1: Leaf-root path example

instead of hashing it to find a corresponding value as the symbol-pair search engine

(i.e. Tangent [6]) does. This allows us to save a lot space as the reverted sub-paths

of a large collection will have a great percentage of level sharing a common substring

with each other. Also the way to search in a tree structure with a limited branch

factor does not lose much efficiency compared to the HASH methods used in Tangent,

while also offers great storage efficiency. Second, by searching from all the “reverted”

sub-paths of a query expression in our proposed index, and apply an intersection on

the results from different sub-paths, we will find all the expressions having that query

as subexpression (number four observed property from section 3.2.3). And during this

search process, upon going further from the query expression root in the “reverted”

sub-path, we can merge the next search directories by pruning all the entries that

are not shared in common among all the “reverted” search paths. Furthermore, if a

relevant indexed formula has been found in a search path level, then other relevant

sub-paths will be found at the same level too, thus some implementation strategies can

be applied to speed search further (i.e. distributed search to quick search massive).

3.2 Structure Similarity

The basic ideas used in our approach, to test whether a mathematical expression

is an sub-structure of another, to prune and constrain search set are the foundation

13

work in our research. It is desired to give a description in a formal language so that we

can deliver these ideas in the most precise way. Some important observations as well

as brief justifications are provided for completeness.

3.2.1 Definitions

For the second issue addressed in section 1.2, specifically, to assess the structural

similarity. Some formal definitions are proposed from previous study [38] which pro-

vides a quantified n-similarity relation to address the similarity degree between math

expressions, based on the max-weight common subtree. The subtree, by their defini-

tion, includes all descendants from a node, however, we are going to use the subtree

definition in graph theory here to describe the sub-structure relation. To be explicit,

given a rooted tree T , the connected graph whose edges are also in T is defined as the

subtree of T . We are also going to give a definition to describe a “match” between

query and a document math formula.

Because we are using some formal descriptions to better illustrate our ideas,

there are some notations we need to clarify that are used throughout this paper.

A path p is a sequence of numbers given by p = p0p1 . . . pn where n ≥ 0, pi ∈ R.

P is the set of all paths. A leaf-root path is a path from root to a leaf in a tree. Any func-

tion f : R→ R applied on path p is mapped to a path too: f(p) = f(p0)f(p1) . . . f(pn).

And we name a concatenation of two paths 1p = p0p1 . . . pn and 2p = pnpn+1 . . . pm

where m ≥ n, to be a new path denoted as 1p · 2p = p0p1 . . . pnpn+1 . . . pm, and

the concatenation of a path p on a path set S = {s1, s2 . . . sn} is defined as S · p =

{s1 ·p, s2 ·p . . . sn ·p}. The longest common prefix path p∗ between two paths p1 and p2

is mapped by the function named lcp, which is defined by p∗ = lcp(p1, p2) = lcp(p2, p1).

Each node in a formula tree is associated with a label (labels are not required

to be distinct here) to represent an unified mathematical operator, variable, constance

etc., a class of similar operators can have the same label value (e.g. same label for

token +, ⊕ and ±). Also each leaf node is associated with a symbol value to represent

a symbolic instance of that constance or variable (e.g. “123”, β, x, y etc.). Besides, a

14

formula subtree relation is also defined to address the sub-structure relation between

two mathematical expressions. Below are our formal definitions.

3.2.1.1 Formula Tree

A formula tree is a labeled rooted tree T = T (V,E, r) with root r, where each

vertices v ∈ V (T) is associated with a label (not necessarily unique in the same tree)

`T (v) ∈ R mapped by label function `T , and each leaf l ∈ V (T) is further associated

with a symbol ST (l) ∈ R mapped by symbol function ST . For convenience, we will

write function ` and S as their short names which refer to the tree implied by the

context, and we use S(p) to indicate the symbol of the leaf in a leaf-root path p. In

addition, we use sT to denote a subtree in T rooted by vertices s ∈ V (T), with all its

descendants.

3.2.1.2 Formula Subtree

Given formula tree S and T , we say S is a formula subtree of T if there exists

an injective mapping φ : V (S)→ V (T) satisfying:

1. ∀ (v1, v2) ∈ E(S), we have (φ(v1), φ(v2)) ∈ E(T);

2. ∀ v ∈ V (S), we have `(v) = `(φ(v));

3. If v ∈ V (S) is a leaf vertices in S, then φ(v) is also a leaf in T .

Such a mapping φ is called a formula subtree isomorphic embedding (or formula em-

bedding) for S → T . If satisfied, we denote S �l T on Φ, where Φ (Φ 6= ∅) is the set of

all the possible formula embeddings for S → T .

3.2.1.3 Leaf-Root Path Set

A leaf-root path set generated by tree T is a set of all the leaf-root paths from

tree T , mapped by a function g(T).

15

3.2.1.4 Index

An index Π is a set of trees such that ∀ T ∈ Π, we have T ∈ IΠ(a) for any

a ∈ `(g(T)), we say T is indexed in Π and IΠ is called index look-up function for index

Π.

3.2.2 Search Method

For a collection of document expressions, we will index them by merging all the

reverted leaf-root paths from each document formula tree into a large “inverted” index

tree, in which each node at path a stores the information of all the indexed formula

trees in IΠ(a). Through searching all sub-paths from a query formula tree Tq at the

same time, we are able to limit the set of possible formula trees being structurally

matching (in formula subtree relation) with Tq, to only a subset of our index. This is

illustrated as follows.

Given an index Π and a formula tree Tq, ∀ Td ∈ Π: If Tq �l Td on Φ, then

∃ â ∈ P, s.t.

Td ∈
⋂
a∈L

IΠ(a)

where L = `(g(Tq)) · â.

Justification. Denote the root of Tq and Td as r and s respectively. Let p̂ be the

path determined by vertices from t = φ(r) to s in Td, and 1p, 2p . . . np, n ≥ 1 be all

the leaf-node paths in Tq. Then â = `(p̂), this is because: L = `({ 1p, 2p . . . np}) · â =

`({φ(1p), φ(2p) . . . φ(np)}) · `(p̂) = {`(φ(1p) · p̂), `(φ(2p) · p̂) . . . `(φ(np) · p̂)}. According

to definition 3.2.1.2 and t = φ(r), we have φ(ip) · p̂ ∈ g(Td), 1 ≤ i ≤ n. Since

Td ∈ Π, Td is indexed in Π with respect to each of the elements in L, that is to say

∀ a ∈ L, Td ∈ IΠ(a).

To summarize, we search the index by intersecting the indexed formula trees

from all the generated leaf-node paths at the same time, then further possible search

path â is only possible when paths along the generated leaf-node paths in the index have

a common prefix. Therefore we can “merge” the paths ahead and prune those paths

16

not in common. Level by level, we are always able to find the structurally matched

formula tree as long as it is indexed in Π.

3.2.3 Substructure Matching

However, query formula tree will not necessarily be formula subtree of all the

document (indexed) formula trees in our search set
⋂
a∈L IΠ(a), even if their generated

leaf-root paths are identical. One supporting example for this point is shown in fig-

ure 3.2. To address this problem, we propose an algorithm described in in figure 3.4,

to test the document formula trees in our search set to see if they are in formula sub-

tree relation with query formula tree. This algorithm is inspired from the following

observations.

3.2.3.1 Observation #1

For two formula trees which satisfy Tq �l Td on Φ, then ∀ φ ∈ Φ, p ∈ g(Tq), also

any vertices v along path p, the following properties are obtained:

deg(v) ≤ deg(φ(v)) (3.1)

`(p) = `(φ(p)) (3.2)

|g(Tq)| ≤ |g(Td)| (3.3)

Justification. Because ∀ w ∈ V (Tq) s.t. (v, w) ∈ E(Tq), there exists (φ(v), φ(w)) ∈

E(Td). And for any (if exists) two different edges (v, w1), (v, w2) ∈ E(Tq), w1 6= w2 ∈

V (Tq), we know (φ(v), φ(w1)) 6= (φ(v), φ(w2)) by definition 3.2.1.2. Therefore any

different edge from v is associated with a distinct edge from φ(v), thus we can get

(3.1). Given the fact that every non-empty path p can be decomposed into a series

of edges (p0, p1), (p1, p2) . . . (pn−1, pn), n > 0, property (3.2) is trivial. Because there

is exact one path between every two nodes in a tree, the leaf-root path is uniquely

determined by a leaf node in a tree. Hence the rationale of (3.3) can be obtained in

a similar manner with that of (3.1), expect neighbor edges are replaced by leaf-node

paths.

17

3.2.3.2 Observation #2

Given two formula trees Tq and Td, if |g(Tq)| = 1 and `(g(Tq)) ⊆ `(g(Td)), then

Tq �l Td.

Justification. Obviously there is only one leaf-root path in Tq because |g(Tq)| = 1.

Denote the path as p = p0 . . . pn, n ≥ 0 where pn is the leaf. Since `(p) ⊆ `(g(Td)), we

know that there must exist a path p′ = p′0 . . . p
′
n ∈ g(Td) such that `(p) = `(p′) where

p′n is the leaf of Td. Then the injective function φ : pi → p′i, 0 ≤ i ≤ n satisfies all the

requirements for Tq as a formula subtree of Td.

3.2.3.3 Observation #3

For two formula trees Tq and Td, if Tq = T (V,E, r) �l Td on Φ, ∀a, b ∈ g(Tq)

and a mapping φ ∈ Φ. Let T ′d = tTd where t = φ(r) and a′ = φ(a), ∀ b′ ∈ g(T ′d), it

follows that:

b′ = φ(b) ⇒ |lcp(a, b)| = |lcp(a′, b′)|

Furthermore, ∀ c ∈ g(Tq) s.t. |lcp(a, b)| 6= |lcp(a, c)|, we have

|lcp(a, b)| = |lcp(a′, b′)| ⇒ b′ 6= φ(c)

Justification. Because a, b ∈ g(Tq), thus a0 = b0 = r, and we can also make sure

lcp(a, b) ≥ 1. Denote the path of a = a0 . . . anan+1 . . . al−1, similarly denote the path

of b as b = b0 . . . bnbn+1 . . . bm−1, where the length of each l,m ≥ 1 and ai = bi, 0 ≤

i ≤ n ≤ min(l − 1,m− 1) while an+1 6= bn+1 if l,m > 1. On the other hand a′ = φ(a)

and b′ ∈ g(tTd), therefore a′0 = φ(a0) = φ(r) = t = b′0. For the first conclusion, if

b′ = φ(b), there are two cases. If either |a| or |b| is equal to one then |lcp(a, b)| =

|lcp(a′, b′)| = 1; Otherwise if l,m > 1, path a0 . . . an = b0 . . . bn and an+1 6= bn+1

follow that φ(a0 . . . an) = φ(b0 . . . bn) and φ(an+1) 6= φ(bn+1) by definition. Because

edge (φ(an), φ(an+1)) and (φ(bn), φ(bn+1)) are both in E(T ′d), we have |lcp(a, b)| =

|lcp(a′, b′)| = n. For the second conclusion, we prove by contradiction. Assume b′ =

φ(c), by the first conclusion we know |lcp(a, c)| = |lcp(a′, b′)|. On the other hand,

18

because |lcp(a, c)| 6= |lcp(a, b)| = |lcp(a′, b′)|, thus |lcp(a, c)| 6= |lcp(a′, b′)| which is

impossible.

3.2.4 Interpretation

The observations above offer some insights on how to test a substructure of a

mathematical expression.

First we give some explanations on the definition. A formula subtree relation

defined in 3.2.1.2 describes not only a sub-structure relation between two math expres-

sions, it also requires a label similarity and leaf inclusion. Because structure shape

(subtree isomorphic) is not the only one factor to determine whether a math formula

is a subexpression of another. Given expression in figure 3.1 as an example, b+ c and

a × (b + c) are considered “similar” because b + c is structurally an subexpression of

a× (b+ c). However, if expressions with different symbols but in similar semantics are

given, e.g. b⊕c or b±c, they should also be considered as similar to a× (b+c) because

both the operations has the similar semantical meaning as “add”. These operations

should be labeled in which all the similar operation tokens have the same label value.

Also, operation tree representation generally puts operator in the intermediate nodes

and operands in the leaves, so it is not common to address a sub-structure without

leaves, like “a×+”. This is the reason that a structure-similarity relation of two should

also contain their leaves.

Now that we have defined our structure similarity rule as whether two trees Tq

and Td can satisfy Tq �l Td, we break down a formula tree into leaf-root paths p and

index the label of each path `(p). So if given a “similar” path q, we can further find

the previous trees that also have `(q) as its labeled path. In section 3.2.3, the first

observation gives some constrains to test if two leaf-node paths are similar without

knowing the complete tree from which they are generated. However, comparing all the

paths from the index one by one would be very inefficient. Section 3.2.2 suggests if we

search the index by all the generated leaf-node paths from a tree at the same time,

then we may just need to look into an intersected region instead of the whole collection.

19

a b c d

e + +

×

(a+ b)× (c+ d)× e

a b c d

e +

×

(a+ b+ c+ d)× e

Figure 3.2: Leaf-root paths with different structure

Because every tree indexed (Td ∈ Π) and matched by the query will be found at our

defined search set.

However, knowing the matched tree in in a set does not necessarily mean all the

tree in the set match with query. Figure 3.2 gives one case where two set of leaf-root

paths are identical while the structures from which they are generated are different,

and not in any sub-tree relation. If left figure is the query, then we can certainly find

the tree in right figure as long as it is indexed, indicated by section 3.2.2. Although

leaf-root paths offer some desired properties, whether the trees found through searching

sub-paths of a query are also structure isomorphic with the query tree is still unknown.

Observations #2 and #3 in section 3.2.3 offer the way to test structure isomor-

phic. The former is a sufficient condition to test structure isomorphic, but the tree

must first have only one leaf-root path. The latter states two necessary conditions to

be a formula subtree of another. This leads to an idea to decompose the tree and

divide the problem into subtree matching problems by ruling out impossible matches

between leaf-root paths using observation #3, until it is obvious to conclude the struc-

ture isomorphic in a sub-problem by using observation #2. These observations inspire

the idea to filter expressions with structure isomorphism in our search set
⋂
a∈L IΠ(a).

20

a bc

r

(a)

a’ b’

s

t

(b)

Figure 3.3: Formula subtree matching

3.2.5 The Decompose-and-Match Algorithm

Here we propose and describe an algorithm for formula subtree matching based

on the interpretation in section 3.2.4. Figure 3.3 illustrates a general case in which

query tree (a) is trying to match a document tree (b).

Initially every leaf-root path in (a) should be associated with a set of leaf-root

paths in (b) that are possible (by the constrains of observation #1 in 3.2.3) to be

isomorphic, we call this set candidate set. Given figure 3.3, the candidate set of path

a in (a) probably is {a′, b′} in (b) if the nodes are assigned universally the same label.

Then we arbitrarily choose a path in (a) as a reference path (heuristically a heavy

path [39]), for each of the paths in its candidate set, we choose it as reference path in

(b), and suppose we choose a′ here. At this time we can apply the two constrains from

observation #3 and ruling out some impossible isomorphic paths in candidate set of

each path in (a), then divide the problems further. For example, because |lcp(a, b)| =

|lcp(a′, b′)|, we know b′ is still in candidate set of b ; while b′ is not in candidate of c

anymore because |lcp(a, b)| 6= |lcp(a, c)|. After going through these eliminations for

21

each leaf-node path (except the reference path a) in (a), we now have two similar

subproblems: c as a subtree along with its candidate set, and b as a subtree along

with its candidate set. We can apply this algorithm recursively until a very simple

subproblem is encountered (e.g. the case in observation #2). During this process, if

we find any candidate set to be empty, we stop the subproblem process and change

to another reference path or stop the algorithm completely if every possible reference

path is tried.

The detailed algorithm is described in figure 3.4. The main procedure is de-

composeAndMatch where the parameters Q and C are the set of leaf-root paths in

query tree and the candidate sets associated with all leaf-root paths respectively. The

procedure returns SUCC if a match is found, otherwise FAIL is returned indicating the

formula tree in (a) cannot be a formula subtree of that in (b).

3.3 Symbolic Similarity

Besides structural similarity, symbolic similarity is also essential to be consid-

ered, because it has some benefits to further differentiate math expression similarity.

Firstly, it is essential to score equations with symbolic matches a higher sim-

ilarity because they may imply more semantic meaning. For example, E = mc2 is

considered more meaningful when exact symbols are used rather than just being struc-

ture identical with y = ax2.

Secondly, as illustrated in section 1.2, same mathematical symbols in an expres-

sion (i.e. bound variables) usually can only maintain semantical equality if the changes

are made by substitutions. (similar to the notion of α-equality [40]). This is an im-

portant semantic information that we need to capture in most math expressions that

contain bound variables, to capture this kind of equality between expressions certainly

involves comparison of symbols.

There is one thing to address here, in many mathematical search systems, a

query may be specified with wildcards and thus will match any document with an

expression substitution to that wildcard. And a query symbol not specified by wildcard

22

1: procedure removeCandidate(d,Q,C)
2: for a ∈ Q do
3: if Ca = ∅ then
4: return ∅
5: else
6: Ca := Ca − {d}
7: return C
8:

9: procedure match(a, a′, Q, C)
10: for b ∈ Q do
11: t := lcp(a, b)
12: Qt := Qt ∪ {b}
13: P := P ∪ {t}
14: for t ∈ P do
15: for b ∈ Qt do
16: for b′ ∈ Cb do
17: if t 6= lcp(a′, b′) then
18: C := removeCandidate(b′, Qt, C)
19: if |C| = 0 then
20: return FAIL
21: if decomposeAndMatch(Qt, C) = FAIL then
22: return FAIL
23: return SUCC
24:

25: procedure decomposeAndMatch(Q,C)
26: if Q = ∅ then return SUCC

27: a := OnePathIn(Q) . Choose a reference path in Q
28: Qnew := Q− {a}
29: for a′ ∈ Ca do
30: Cnew := removeCandidate(a′, Qnew, C)
31: if Cnew = ∅ then return FAIL

32: if match(a, a′, Qnew, Cnew) then return SUCC

33: return FAIL

Figure 3.4: The decompose-and-match algorithm

23

is expecting an exact symbolic occurrence in document. Yet in our approach, same

symbols imply a higher rank, we can get an exact symbolic match if it does exist in our

index. On the other hand, we do not have to specify wildcard to match its α-equalities.

[11] also doubts the wildcard demand in mathematical search as it is not common to

expect an exact symbol occurrence when we query in mathematical language.

3.3.1 Ranking Constrains

As we have discussed, symbolic similarity is essential to be captured, in order

to further rank document expressions. Here we propose two constrains to addressed

all the considerations, they can be summarized as:

• Given two formula trees Tq �l Td on Φ, suppose a leaf l ∈ V (Tq) is isomorphic
to leaf l′ ∈ V (Td), that is to say, there exists φ(l) = l′, where φ ∈ Φ, then if their
symbol matches, i.e. S(l) = S(l′), we score them higher than those do not match
symbolically. And the more symbolic matches there are, the higher symbolic
relevance degree two expressions would expect to have.

• α-equivalent expressions have more symbolic relevance degree than those are not,
and the more bond variables (variable with same symbol in an expression) two
expressions match at the structurally matching positions, the more symbolically
relevant they are considered to be.

In this paper, we use these two constrains as the rule to rank retrieval results

in terms of symbolic similarity. And in cases where both constrains can be applied,

we prioritize the second constrain. This is because, intuitively, as long as the semantic

meaning of two expressions is the same, using different set of symbols does not make a

difference. However, bound variable match is more important because an mathematical

expression with more than one identical symbols most often implies those symbols

represents the same variable.

The constrains and idea above are illustrated by the following example. Let the

rank of a document math expression d be r(d), and given query
√
a(a− b) for instance.

It is easy to see under the first constrain:

r
(√

a(a− b)
)
> r
(√

a(a− x)
)
> r
(√

x(x− y)
)

24

The document with the highest rank here is an exact match, with three symbols match-

ing in total. The second document has two symbols matching while the third document

has no symbolic match at all.

In the same manner, by the second constrain we have:

r
(√

x(x− b)
)
> r
(√

x(y − b)
)

The first document uses bound variable x but it preserves the same semantics compared

to the query, except for the symbol of that bond variable is different with that of query.

The second one does not have bound variable match, in another word, it uses different

symbols (i.e. “x, y”) at positions where query expression uses the same symbols (i.e.

“a”).

One common pattern the first example follows is all “ranking” documents in

the first example have the bound variable match, the only difference is the number of

symbol matches. On the other hand, all “ranking” documents in the second example

have the same number of symbol matches (only “b” is matched in a symbolic way). So

it is easy to follow only one of the two constrain. However, sometimes both constrains

can be applied so that conflict may occur and we have to choose only one to follow.

For example, given document expression
√
a(x− b) and

√
x(x− b), the former has two

symbolic matches (i.e. “a, b”) with our query
√
a(a− b), while it does not have bound

variable match. The latter, on the other hand, has bound variable match while only

has one symbolic match (i.e. “b”). We nevertheless score the latter higher because it

does not lose any semantics.

3.3.2 The Mark-and-Cross Algorithm

Here we propose an algorithm to score symbolic similarity between query and

document expressions. To follow all the constrains and issues addressed, intuitively,

we first take the bond variable with greatest number of occurrence in query expression,

try to match as much as possible with each bond variable from document expression.

The best-matching bond variable in document expression is chosen to contribute to the

25

final symbolic relevance score (proportionally to the number of matches in that bond

variable), and we exclude its paths from matching query paths in future iterations. In

the next iteration, we choose the bond variable with the second number of occurrence in

query expression and repeat this process until all the query bond variables are iterated.

The algorithm is described in figure 3.5. It takes three arguments, the set of

leaf-root paths D and Q in document expression and query expression respectively,

and the candidate sets C associated with all leaf-root paths in query. The bound

variables in D is defined by a set V (D) = {x | S(x), x ∈ D}, which contains all the

leaf node symbols from document expression. Procedure sortBySymbolAndOccur takes

a set of leaf-root paths and returns a list of all the leaf-root paths. The list is sorted

by tuple
(
Np,S(p)

)
for list element p, where Np is the number of S(p) occurred in all

the list path symbols. Take the example expression

(
b · a+ b

a+ c
+ a

)
again, the result

list returned by sortBySymbolAndOccur is a sequence of leaf-root path of a, a, a, b, b, c

respectively.

Each document path a′ is associated with a tag Ta′ which has three possi-

ble states: marked, unmarked and crossed. And bond variable v ∈ V(D) can be

given a score Bv which represents the similarity degree between current evaluating

query/document bond variables. The function sim(a, a′) measures the symbolic simi-

larity degree between two leaf-root paths a and a′.

Intuitively, we set the similarity function

sim(a, a′) =

1 if S(a) = S(a′)

α < 1 otherwise

to give more similarity weights to leaf-root paths with exact symbol match. (this

function sim(a, a′) is used only when a document path is in candidate set, see figure 3.5).

Let us determine the proper value for α. Consider the conflicting cases stated

in this section by using another example here, given query expression a+ 1
a

+
√
a and

26

1: procedure markAndCross(D,Q,C)
2: score := 0
3: if D = ∅ then return 0

4: for a′ ∈ D do Ta′ := unmark

5: for v ∈ V(D) do Bv := 0

6: QList := sortByOccurAndSymbol(Q)
7: for a in QList do
8: flag := 0
9: for v ∈ V(D) do

10: m := −∞
11: mp := ∅
12: for a′ ∈ Ca ∩ {y | S(y) = v, y ∈ D} do
13: if Ta′ = unmark and sim(a, a′) > m then
14: m := sim(a, a′)
15: mp := a′

16: if mp 6= ∅ then
17: Tmp := mark
18: Bv := Bv +m
19: flag := 1

20: if flag = 0 then . Exhausted all candidates
21: return 0
22: if S(a) changed or last iteration of a then
23: m := −∞
24: mv := ∅
25: for v ∈ V(D) do
26: if Bv > m then
27: m := Bv

28: mv := v

29: Bv := 0

30: score := score +m
31: for v ∈ V(D) do
32: if v 6= mv then
33: nextState := unmark
34: else
35: nextState := cross
36: for a′ ∈ Ca ∩ {y | S(y) = v, y ∈ D} do
37: if Ta′ = mark then
38: Ta′ := nextState

39: return score

Figure 3.5: The mark-and-cross algorithm

27

document expression a+ 1
a

+ b+ 1
b

+
√
b, we consider bond-variable matching

a +
1

a
+
√

a

with

a+
1

a
+ b +

1

b
+

√
b

weighted more than exact symbol matching

a +
1

a
+
√
a

with

a +
1

a
+ b+

1

b
+
√
b

(expressions surrounded by a box here indicates the matching part)

Because the former matching has more variables involved even if they are not

identical symbolic matches compared with its counterpart of the latter. That is to say,

given a document bond-variable matching k variables with those in query, we need α

to satisfy kα > (k − 1)× 1 = k − 1 and α < 1. Therefore, in our practice, we set α to

a value close to 1, e.g. 0.9.

By sorting the query paths in Q, the algorithm is able to take out paths of

the same bond variables in maximum-occurrence-first order from QList. Each query

path a tries to match a path a′ in each document bond variable v by selecting the

unmarked path mp with maximum sim(a, a′) value, and accumulate this value on Bv

which indicates the similarity between currently evaluating query bond variable and

the bond variable v in document expression. In addition, mark the tag Tmp associated

with the document path mp. Once a query bond variable has been iterated completely

(line 22), let the document bond variable mv with greatest Bv value m, be the best-

matching bond variable in V(D) with the query bond variable just iterated, then add m

to the score. Before iterating a new query bond variable, we will cross all the document

paths of variable mv to indicate they are confirmed been matched, and unmark the

tags of those marked paths that are not variable mv. We continue doing so until all

28

the query paths are iterated, finally return the score indicating the symbolic similarity

between the two expressions.

3.4 Combine The Two

We have already discussed the problem and proposed the algorithms to both test

structure isomorphic and measure symbolic similarity between mathematical expres-

sions. The two algorithms, however, do not cooperate in an unified way. To illustrate

this point, assume we first use decompose-and-match algorithm and have concluded

one is a formula subtree of another, but we only get one possible substructure match.

There are very likely other possible positions where this tree can also be formula sub-

tree of another, because the candidate sets are not unique (or |Φ| > 1). Thus we need

to exhaust all possibilities and apply mark-and-cross algorithm to each of them, in

order to find the maximum symbolic similarity pair. Analogously, assume we first want

to get the symbolic similarity degree, then we are uncertain about the paths we have

specified in candidate set are really isomorphic paths to the query path, i.e. we will

not guarantee substructure relation when using decompose-and-match algorithm.

One possible way to both test strict structure isomorphism and measure sym-

bolic similarity is to decompose the tree and try to match all the substructures but at

the same time heuristically choose reference paths to find the best simbolic match in

a greedy way, if no possible substructure can be matched isomorphically, we have to

rollback and try other candidates using backtracking. From efficiency perspective, the

mark-and-cross algorithm already has an worst case time complexity ofO
(
|Q|×|D|

)
,

if we try to find the best match (find the one with not only the most symbolic similarity

but also who satisfies structure isomorphism), then it will eventually lead to more time

complexity.

3.4.1 Relaxed Structure Match

The complexity introduced to combine the two methods will make our approach

infeasible to efficiently deal with large data set. Here we choose to relax our constrain

29

on strict structure isomorphism. As figure 3.2 has illustrated, we know that the labels

of a leaf-node path set being a subset of another does not necessarily mean the tree

generating the former path set is a formula subtree of that generating the latter. To

further generalize it, we say for any two formula tree Tq and Td and ∀ â ∈ P, if `(g(Tq))·

â ⊆ `(g(Td)), it is not sufficient to imply Tq �l Td. Nevertheless, we think the cases

which makes the above statement insufficient are fairly rare in common mathematical

content, and the complexity introduced from considering those cases will offset the

benefit to strictly identify the structure isomorphism. Therefore, we loose our constrain

on structure similarity so that any Td ∈
⋂
a∈L IΠ(a) is considered structurally relevant

to query formula tree Tq in section 3.2.2, and we say Td is searchable by Tq in index

Π. Optionally, we can apply constrain 3.1 in observation #1 to further eliminate cases

such as the one in figure 3.2 so that less query/document expressions which are not

in formula subtree relation would be considered relevant. We name this constrain as

fan-number constrain.

The revised method will collect all the “structurally similar” document formula

trees that satisfy the fan-number constrain in the set
⋂
a∈L IΠ(a). Then use mark-

and-cross algorithm to rank their symbolic similarity.

3.4.2 Matching-Depth

On the other hand, we introduce a matching depth d = |â| into symbolic similar-

ity measurement algorithm, to make it also consider the depth of a structural match.

As it is addressed in [11], the deeper level at where two formula matches, the lower

similarity weight would it be, since the deeper sub-formulae in in mathematical ex-

pression will make it less important to the overall formula. For example, given query

formula
√
a, expression

√
x would score higher than

√√
x does. To reflect the impact

on score, we define matching depth factor f(d) to be a function value where f is in

negative correlation with matching depth: f(d) = 1/(1 + d).

30

3.4.3 Matching-Ratio

We may also need a way to evaluate how many percentage is a query matching a

document expression. According to the property 3.3 in section 3.2.3 (observation #1),

for two expression in formula subtree relation, we have
|g(Tq)|
|g(Td)|

≤ 1, we name the ratio of

left-hand as matching-ratio, which characterises the structural coverage for a matching

query in an expression. Consider the scenario where a query expression is structural

isomorphic to two document expressions, and the symbolic similarity between them are

the same. However, the different “area” that the query matches to the two document

expressions essentially makes them be scored differently. For example, for query ax+b,

document expression ax + b should precede x2 + ax + b although the query matches

both two document expressions equally in terms of symbol.

3.4.4 Final Ranking Schema

Before matching-depth and matching-ratio is introduced, if a formula subtree

relation is inferred between two formula trees, they are considered structurally match-

ing in a boolean manner. There is no similarity degree between a complete match (or

a sub-formula) and structurally irrelevant. In another word, structural differences is

considered in a way to filter indexed expressions, for further symbolic similarity assess-

ment. The final output ranking is determined by symbolic similarity degree, without

considering structural similarity. Matching-depth and matching-ratio are metres intro-

duced to measure the structural similarity, in the end we need to combine them with

symbolic similarity to rank search results. Denote symbolic similarity score calculated

by mark-and-cross algorithm to be s, and f(d) being the matching depth factor, r

being the matching ratio for a pair of query/document. We will use them together in

a tuple (s, f(d), r), to indicate the overall similarity and rank items in search results,

3.4.5 Illustrated by an Example

We illustrate the method introduced in this chapter by a simple example here.

Given a query expression ax(a + b) and document expression ax + (b + a)by, here we

31

4
vb

5
a+

6
t×

1
va

3
va

2
vx

query expression ax(a+ b)

4
vb

8
t× 9

t×

10
a +

7
a+

1
va

5
vb

3
va

2
vx

6
vy

document expression ax+ (b+ a)by

Figure 3.6: Example query/document expression representation

show how we search the relevant document using this query and how the relevance

score between them is calculated by mark-and-cross algorithm.

The query expression and document expression are represented by operation

trees Tq and Td in figure 3.6. Instead of only denoting the operation symbols at the

internal nodes and the variable/constant symbols at the leaf nodes, we use the notation

i
lS or iS to denote a node with symbol S labeled by l (i.e. `(S) = l) with vertex number

i. The three different possible labels used here are v, t and a, standing for unified

name “variable”, “times” and “add” respectively. To be concise and descriptive, we

will interchangeably use either iS notation or qi (or pi) to represent the leaf-root path

in a query (or document) operation tree where the leaf vertex i resides.

Firstly, the generated path sets for Tq and Td are:

g(Tq) = {1 · 6, 2 · 6, 3 · 5 · 6, 4 · 5 · 6}

g(Td) = {5 · 8 · 10, 6 · 8 · 10, 3 · 7 · 8 · 10, 4 · 7 · 8 · 10, 1 · 9 · 10, 2 · 9 · 10}

32

And the labeled path sets for each of the two are:

` (g(Tq)) = {v · t, v · a · t}

` (g(Td)) = {v · t · a, v · a · t · a}

Because ` (g(Tq)) · a = ` (g(Td)), which follows

`(g(Tq)) · â ⊆ `(g(Td))

where â = a, we know Td is searchable by Tq, so there exists a path â we can search to

append after every labeled path in set ` (g(Td)) so that we will find Td by intersecting

all the formula trees indexed (in index Π) in these paths.

Secondly, by the implications from observation #1 of section 3.2.3, we get the

candidate set for each of the path in Tq:

Cq1 = {p5, p6}

Cq2 = {p5, p6}

Cq3 = {p3, p4}

Cq4 = {p3, p4}

In addition, get the list L containing all the query paths in Tq sorted by symbol

and its occurrence in all path symbols,

QList = q1, q3, q4, q2.

Lastly, we can calculate the symbolic similarity degree between the two expres-

sions by going through each query path from QList in order and apply mark-and-cross

algorithm (use α = 0.9). Then the first two iterations which calculates the matching

score for bound variable a in Tq can be illustrated by table 3.1.

Each path of query bound variable a is compared with that from document

path in its candidate set, and each resulting sim(a, a′) value is accumulated on the

corresponding document bound variable Bv. Then the current score is also calculated,

by accumulating the max Bv value among all the bound variable v in document ex-

pression. The tags associated with document path 4b and 5b are marked as crossed

33

current score 0

bound variable Ba = 1 Bb = 1.8 (max) By = 0.9
hhhhhhhhhhhhhhhhhhquery path

document path 3a 4b 5b 6y

1a 0.9 0.9

3a 1 0.9

Table 3.1: First two iterations of example score evaluation

current score 0.9 + 0.9 = 1.8

bound variable Ba = 0.9 (max) Bb = 0 By = 0
hhhhhhhhhhhhhhhhhhquery path

document path 3a 4b 5b 6y

1a 0.9 0.9

3a 1 0.9

4b 0.9

Table 3.2: 3rd iteration of example score evaluation

34

current score 1.8 + 0.9 = 2.7

bound variable Ba = 0 Bb = 0 By = 0.9 (max)
hhhhhhhhhhhhhhhhhhquery path

document path 3a 4b 5b 6y

1a 0.9 0.9

3a 1 0.9

4b 0.9

2x 0.9

Table 3.3: 4th iteration of example score evaluation

state, to prevent path 4b and 5b from being compared in future iterations. For the next

query bond variable b in QList, first zero every Bv value, then calculate its matching

score with the document paths in its candidate sets in a similar manner except we

have skipped some document paths in candidate sets because they are crossed in the

previous iteration. Table 3.2 shows the intermediate results before iterate to the next

query bond variable in QList. Finally, we use the same way to process the last query

bond variable x. Its query path 2x is matched with document path 6y with sim(2x, 6y)

value equals to 0.9. Then the only non-zero Bv value from document bound variable

y will contribute to final symbolic similarity score which in the end is added up to 2.7

(see table 3.3).

Now we have finished our symbolic similarity evaluation between given query

expression and document expression. We can also infer that the matching-depth d is

|â| = 1, matching factor f(d) =
1

1 + d
= 0.5, and the matching-ratio r =

|g(Tq)|
|g(Td)|

=

4

6
≈ 0.67. The final score tuple (2.7, 0.5, 0.67) is used to determine the similarity

degree in general and rank the document expression.

35

Chapter 4

IMPLEMENTATION AND EVALUATION

Based on the method we propose, we have implemented a search engine as well

as a crawler and a parser for LATEX content. Also, a demo 1 with Web interface is

available for demonstration. In this chapter, we will introduce the way we implement

our proposed method and use this system to evaluate its effectiveness and efficiency.

4.1 System Overview

Our system is consisted of a crawler, a parser, an indexer, a search program back-

end and a Web front-end. The crawler searches and extracts math mode LATEX from

Website that directly returns LATEX markup (e.g. from math content websites using

client-side rendering, e.g. MathJax). The parser parses LATEX markup and prints the

generated operation tree. The indexer uses parser to transform LATEX markup into

operation tree and indexes sub-paths on disk. The search program searches a query in

index and returns search results, also exports a library for Web front-end which is a

CGI program to interactive with user.

The outline of our system process is, crawl and convert math expressions into

an in-memory tree structure, then write the leaf-root path labels along with degree

number associated with each nodes to disk as our index. When a user uses our Web

front end to search, the Web CGI program calls the search library to search and score

similar expressions in index, the search library outputs ranking results and Web CGI

program rewrite them in HTML.

1 demo page: http://tkhost.github.io/opmes

36

http://tkhost.github.io/opmes

4.2 Implementation

Each component of our search engine is implemented as a separated module, the

only way to interact with each module is by calling a library API that another module

exposes, or by reading/writing to a plain text file. In this section, we will describe the

implementation detail for each isolated module.

4.2.1 Crawler

The crawler is a python script using BeautifulSoup to crawl Web pages and

extract math mode LATEX. We have implemented a crawler specifically for the posts

on Math Stack Exchange website, crawler can be specified to crawl posts by page or

post ID. For a post, the crawler searches the pattern of a LATEX inline or display text

mode using regular expression. When a LATEX mode has been extracted, it is stripped

with line feed and saved as plain text file one text mode per line and one file per post.

4.2.2 Parser

We are tokenizing math content using lexer generator flex and have implemented

a LALR parser generated from a set of grammar rules in GNU bison, specifically for

MathJax content in a subset of LATEX (those related to mathematics). Our parser

transforms a math formula into an in-memory operation tree (representing formula

tree), as an intermediate step to extract the path labels, path ID, and degree numbers

associated, for every leaf-root path from the tree. Our lexer omits all LATEX control

sequences not matching any pattern of our defined tokens, most of them are considered

unrelated to math formula semantics (environment statement, color, mbox etc.).

The complete grammar rules we use to parse LATEX math mode text is listed

in Appendix A. The start rule doc represents a LATEX math mode (either inline or

display mode). Sub-rules (lower case names in grammar rules) handle mathematical

patterns such as addition/subtraction, modular, relation (e.g. equality, greater than,

less than), factor, script, brackets etc. Tokens are using upper case names, the atom

rule represents a series of tokens that are mostly used as an atom unit in mathematical

37

‘--(ADD, ADD, #14, *2, @0)

‘--(NEG, NEG, #7, *1, @0)

| ‘--[‘b’, VAR, #1, *1, @0]

‘--(SQRT, SQRT, #13, *1, @1)

‘-(ADD, ADD, #12, *2, @0)

|--(HANGER, HANGER, #9, *2, @0)

| |--(SUP_SCRIPT, SUP_SCRIPT, #8, *1, @0)

| | ‘-[‘2’, NUM, #2, *1, @0]

| ‘-[‘b’, VAR, #3, *1, @1]

‘-(NEG, NEG, #11, *1, @1)

‘-(TIMES, TIMES, #10, *3, @0)

|--[‘4’, NUM, #4, *1, @0]

|--[‘a’, VAR, #5, *1, @1]

‘-[‘c’, VAR, #6, *1, @2]

Figure 4.1: Example parser output

context (e.g. fraction, root, infinity). Other tokens are as part of some grammar rules.

The partial list of lexer tokens for our parser are listed in Appendix B, the left field is

escaped LATEX command string, the right field in curly brackets is the token that the

left command mapped to. Although enumerating LATEX math mode commands results

in a long lexer list, we get a very simple grammar rules that is enough to handle most

of our crawled data.

An example of an operation tree plain text output generated from our parser for

math expression −b±
√
b2 − 4ac is shown by figure 4.1. Where every node is associated

with five values: symbol value (meaningful only for leaf node), label value, node ID

(indicated by “#”), degree of that node (indicated by “*”) and the rank of a node

(indicated by “@”) in terms of its father node. The node ID for a leaf will be used to

identify the leaf-root path with respect to that leaf node, and the rank of child node

will be used to locate non-commutative tokens in a math expression. The indexer later

will choose some of these information from nodes along a leaf-root path to index the

tree.

38

4.2.3 Index

The indexer writes the information extracted from parser onto disk. There are

two parts in our index, the first part uses native file system (for the sake of implemen-

tation simplicity) to store leaf-root path labels in directories from which our search

engine can go level by level. Path ID, degree numbers, and also the formula ID of

expression which generates that leaf-root path (we refer these three as branch word)

are stored in a “posting” file at the directory corresponding to that branch word labels,

e.g. the tree in figure 3.1 will result in indexing two directories: ./VAR/TIMES and

./VAR/ADD/TIMES. All the indexed branch words with path labels corresponding

to directory ./VAR/TIMES/ are stored in the posting file of that directory, located at

./VAR/TIMES/posting.bin in this case. Branch words in a posting file are ordered by

their formula IDs to speed search (so we can merge two posting files with size M and

N respectively, then find the branch words with same formula ID in O(M +N) time).

The second part of our index is a key-value database (using Kyoto Cabinet) to map a

formula ID to additional information for that formula (e.g. original markup, number

of leaf-root paths |Td| and the URL on which the formula is crawled).

4.2.4 Search Program

The compromised substructure searching (described in section 3.2.2) is used in

our search engine to filter out likely isomorphic expressions in our index. Searching

is performed by simultaneously going from all the directories corresponding to the

generated leaf-root paths of query formula tree, to all their merged subdirectories. We

keep traversing, at each level intersecting the branch words (by their formula IDs) in

the posting files from all the searching directories. The intersected formula IDs actually

represent the trees in our search set
⋂
a∈L IΠ(a). Every document formula spotted in

the search set is considered as a hit, we then apply markAndCross algorithm to get

its symbolic similarity score with query formula (using the branch word information

indexed in posting file) . The search program uses our ranking tuple described in

section 3.4.4 to indicate the overall similarity and rank items in search results, i.e. to

39

Search page Results page

Figure 4.2: Web front-end

decide whether one should be ranked higher than the other, first compare s, if equal,

compare f(d) and then r. In addition, we use a min-heap to keep the top-k scored

items in our search results (by replacing the lowest scored items if we find a newer

hit with higher score), where k is the maximum number of items we keep in search

results. We also place an early termination valve on the number of branch words can

be searched for one query at a time, so that when exceeding this limit, search engine

will stop and return the search results it has up to that time. Because some query can

potentially have a very long posting list, doing so would make our searching response

time no more than a certain value.

4.2.5 Web Front-End

The Web front-end presents user a Web page (search page) that accepts a query

in an input box and returns search results in several Web pages (result pages). User

query is sent from browser to the front-end program by HTTP POST method and the

start page of all ranked hits is specified by HTTP GET request. The front end CGI

program calls search library and wraps search results in HTML list elements, at the

40

ID formula ID formula

1
∫∞

0
dx
∫∞
x
F (x, y)dy =

∫∞
0
dy
∫ y

0
F (x, y)dx 2 X(iω)

3 xn + yn = zn 4
∫∞
−∞ e

−x2dx

5 f(x+h)−f(x)
h

6 sinx
x

7 ax2 + bx+ c 8 ex+y
z

9 O(n log n) 10 Hn(X) = Zn(X)/Bn(X)

11 An = 1
π

∫ π
−π F (x) cos(nx)dx 12 limx→∞(1 +

1

x
)x

13 f(x) = f(0) + f ′(0)x+ f ′′(0)
2!
x2 + . . . 14 f(a) = 1

2πi

∮
r
f(z)
z−a dz

15 x2 + 2xy + y2 = |x|2 + 2|x||y|+ |y|2 16
∫ b
a
f(x) dx = F (b)− F (a)

17 n!
r1!·r2!···rk!

18 −b±
√
b2 − 4ac

19 1 + tan2 θ = sec2 θ 20 ū = (x, y, z)

Table 4.1: Test query set

same time creates navigation links to help user browse results by page. Figure 4.2

shows a screenshot of the search page and a result page from Web front-end.

4.3 Evaluation

We rely on the search engine described in previous section to evaluate our search

methods proposed in this paper. Yet retrieval based on an equation is a relatively

new task, previously studied in the context of NTCIR Math Tasks. The criteria to

give judges about assessing the level of similarity degree between math expressions

is not in a high level of agreement. Nevertheless, we choose to evaluate our system

by comparison to a naive baseline, and provide our intuitive guidelines for relevance

judgements.

41

4.3.1 Dataset and Index

Our own dataset is created to evaluate proposed method. We have crawled

LATEX content from the posts of nearly entire (27180 pages of questions) Math Stack

Exchange website before March 2015. The data set 2 is plain text files generated

by crawler output (LATEX math mode content per line, one file for each post). Over 8

million expressions of math mode are contained in the data set. The dataset is available

through a roughly 60MB bzip2 compressed file.

Our test query set 3 consists queries mostly from [2] and [6], some of them

are excluded here because we are unable to find similar formula in our own dataset.

Table 4.1 shows our complete test queries used in our evaluation.

The popular evaluation dataset in this research domain, the NTCIR Math Task

collection, is in MathML/XML format, and original LATEX information is not always

preserved in their dataset. Here we choose not to use their dataset because we are pars-

ing LATEX directly. Although converting MathML/XML formula to LATEX is possible,

we fail to convert all the document in NTCIR dataset correctly (using pandoc). Fur-

thermore, supporting wildcard query is a default requirement in NTCIR Math Task,

while our approach does not support wildcard (see section 3.3).

After parsing our dataset using the indexer, the resulting index includes an 892

MB key-value database file and roughly 9.4GB directories and posting files.

4.3.2 Relevance Judgement

We have defined four relevance levels, scored from 0 to 4 in our evaluation

experiment. This criteria considers both structural similarity and symbolic similarity.

Structural similarity is scored by either 0, 1 (mostly similar) or 2 (complete matching);

symbolic similarity is scored by 0, 1 (mostly identical symbols for the matching parts)

or 2 (identical symbols for the matching parts). The overall level of relevance is simply

2 raw data: http://infolab.ece.udel.edu:8912/cowpie/raw.tar.bz2

3 query set: http://infolab.ece.udel.edu:8912/cowpie/test-queries.tex

42

http://infolab.ece.udel.edu:8912/cowpie/raw.tar.bz2
http://infolab.ece.udel.edu:8912/cowpie/test-queries.tex

Relevance Score
Structurally

Low similarity High similarity Complete match

Symbolically
Low similarity 0 1 2
High similarity 1 2 3

Complete match 2 3 4

Table 4.2: Judgement score table

the sum of the two scores. Table 4.2 lists all possible values for the overall relevance

score in each case.

4.3.3 Results

We have evaluated two methods here. The baseline method is a boolean search

for structural related document using the method in section 3.2.2. We compare the

baseline method with the more comprehensive search method proposed in this paper,

which further considers symbolic similarity score, matching depth factor and matching

ratio as described in section 3.4.

Table 4.3 shows the distribution of hits and relevance judgement score of top

20 results (or less, if the number of hits are fewer than 20) for each test query listed

in table 4.1. The relevance scores directly reflect the effectiveness of our methods.

figure 4.3 has visualized the relevance level of our evaluation. On the other hand, we

also have done a performance evaluation on the average query look up time for each

test query. The efficiency performance comparison of these two methods is shown in

figure 4.4 (The query look-up time is the time consumed for searching directories and

posting files, this is the majority of time consumption for the query look-up in our

implementation).

Results show that our symbolic similarity measurement, if used, can boost search

effectiveness in all the five metres evaluated, and consumes a reasonable extra time on

top of the baseline method.

43

Query
Relevance Score

Judged
0 1 2 3 4

1 15 2 2 0 1 20
2 20 0 0 0 0 20
3 15 4 1 0 0 20
4 0 0 0 6 14 20
5 0 0 0 8 12 20
6 0 2 5 2 11 20
7 1 4 3 3 9 20
8 4 2 13 1 0 20
9 17 2 1 0 0 20
10 5 1 1 1 0 8
11 0 0 4 11 5 20
12 0 0 1 16 3 20
13 0 0 0 1 6 7
14 0 0 4 13 3 20
15 14 3 1 1 1 20
16 0 2 5 8 5 20
17 0 0 0 15 5 20
18 8 6 2 2 2 20
19 0 0 5 13 2 20
20 19 1 0 0 0 20

Query
Relevance Score

Judged
0 1 2 3 4

1 13 2 2 1 1 19
2 15 1 0 3 1 20
3 0 0 0 0 20 20
4 0 0 0 1 19 20
5 0 0 0 0 20 20
6 1 0 0 0 19 20
7 0 0 0 0 20 20
8 4 3 12 1 0 20
9 0 0 0 0 20 20
10 4 1 1 1 0 7
11 0 0 4 11 5 20
12 0 0 0 9 11 20
13 0 0 0 1 6 7
14 0 0 9 6 5 20
15 14 2 1 1 2 20
16 0 0 0 0 20 20
17 0 0 0 14 6 20
18 0 0 2 0 18 20
19 0 0 0 0 20 20
20 0 0 2 7 11 20

Table 4.3: Relevance score distribution

44

MA
P

P@
5

P@
10

P@
20

bp
ref

x label

0.0

0.2

0.4

0.6

0.8

1.0

av
g
pe

rfo
rm

an
ce

baseline
similarity search

Partial relevance (relevance score ≥ 1)

MA
P

P@
5

P@
10

P@
20

bp
ref

x label

0.0

0.2

0.4

0.6

0.8

1.0

av
g
pe

rfo
rm

an
ce

baseline
similarity search

Relevance (relevance score ≥ 3)

Figure 4.3: Effectiveness performance

45

2 4 6 8 10 12 14 16 18 20
query ID

0.00

0.05

0.10

0.15

0.20

0.25

0.30

av
g
qu

er
y
lo
ok
-u
p
tim

e
(s
ec
)

to 3.95

baseline
similarity search

Figure 4.4: Efficiency performance

46

Chapter 5

CONCLUSION AND FUTURE WORK

We try to advance the search method for math expression using sub-paths.

This is a structure-based approach (as described in section 2.2) to search and assess

mathematical expression similarity. Without using vector-space model as opposed to

its presence on text-based approach, our method has tried to further develop structure-

based method and offer some new insights for future research, and the evaluation results

already indicate the feasibility of our methods. One of our hypothesis is structure-based

method better captures mathematical expression semantics. We believe there is large

potential to further refine our novel similarity-search method as our presented attempt

to improve mathematical-similarity search has demonstrated some promising aspects

of our method, and lured some new ideas to improve our method.

5.1 Summary and Conclusion

Our method tries to measure math-expression similarity from the perspective

of their structures and operand symbols. We search structurally relevant expres-

sions in a subset of index and our evaluation results have demonstrated the overall

cost-effectiveness of adding symbolic similarity-search method on proposed structural

similarity-search. This paper’s main contribution includes, first gives definitions and

algorithms for evaluating the similarity between two math expressions to allow a math-

aware search system to rank candidate expressions against a query expression; second

gives a novel search method to reduce the search set of structurally similar expres-

sions given a query. By implementing those ideas and conducting experiments on our

dataset, we have offered insights into a new way to perform matching of structured

content in general. Given the newness of the domain, we have showed an appealing

47

new direction to handle math expression search from an angel of both symbolic and

structural similarity.

5.2 Current Problems

We expect our index to be less redundant because our method does not need

augmentation to capture the same semantical meanings between different alternative

forms of a math expression, while it is observed that our index size is still relatively

large (9.4GB) compared to the size of input raw data (around 60MB). There are pre-

sumably two reasons for this: Firstly we are implementing our index based on file

system directories for the ease of implementation, the overhead for constructing direc-

tories in file system cannot be overlooked. Secondly, the 60MB raw data are all math

formula in LATEX, in contrast to a general text search engine, whose raw data usually

contains the entire document text, our raw data is comparatively more data-intensive,

and carries more information than general text. Moreover, we do not use any kind

of compression in our index. Another observation is, the absolute value of our query

lookup time is not ideal, especially the first-time querying takes much longer time

(because cache miss) than the time of subsequent same queries. Furthermore, queries

with simple decomposed sub-paths take relative much longer time to search (e.g. query

number 2 takes almost 4 seconds in average).

5.3 Future Work

In the next stage, trying to reduce the overhead for searching the index can

be a good way to fix our bottleneck on both improving storage space efficiency and

speeding up query look-up process. We may try to index the data into a single large

file (e.g. implement a B-tree like file structure to store sub-paths) instead of small files

spread over directories, to lower the system overhead in storage and take advantage

of cache locality. It maybe also a good idea to try compressing the index and saving

less information on disk for a branch word to further reduce the storage demand for

our index. Nevertheless, Considering the fact that our system is newly created, we

48

have already met the goal to test our new ideas on concerned domain, despite the less

usability compared to already mature existing tools for general text search.

Also, the experiments we have is not based on popular NTCIR dataset in this

research domain, because of the problem we mentioned in section 4.3.1. This leaves

a comparison of our method with mainstream math information retrieval methods to

be desired. In the future, we may try to create a new parser for MathML content to

generate operation tree defined in this paper, so that we are able to give experiments

on some standard dataset of math IR, with larger data size and more testing queries,

in order to provide more comparable results on evaluation.

Other than the problems addressed above, it is also desired to integrate general

text search ability into our math-only search method. Additionally, the manner we

use to break math formula into branch words and to index them through posting list

makes it easy to parallelize and distribute the searching process, which means there is

a large potential for future efforts to improve the efficiency of this method.

49

REFERENCES

[1] Richard Zanibbi and Dorothea Blostein. Recognition and retrieval of mathemat-
ical expressions. International Journal on Document Analysis and Recognition
(IJDAR), 15(4):331–357, 2012.

[2] Topics for the ntcir-10 math task full-text search queries. http:

//ntcir-math.nii.ac.jp/wp-content/blogs.dir/13/files/2014/02/

NTCIR10-math-topics.pdf. Accessed: 2015-03-31.

[3] Akiko Aizawa, Michael Kohlhase, and Iadh Ounis. Ntcir-11 math-2 task overview.
The 11th NTCIR Conference, 2014.

[4] Jozef Misutka. Mathematical search engine. Master’s thesis, Charles University
in Prague, May 2013.

[5] Xuan Hu, Liangcai Gao, Xiaoyan Lin, Zhi Tang, Xiaofan Lin, and Josef B. Baker.
Wikimirs: A mathematical information retrieval system for wikipedia. Proceedings
of the 13th ACM/IEEE-CS joint conference on Digital libraries. Pages 11-20,
2013.

[6] David Stalnaker and Richard Zanibbi. Math expression retrieval using an inverted
index over symbol pairs in math expressions: The tangent math search engine at
ntcir 2014. Proc. SPIE 9402, Document Recognition and Retrieval XXII, 940207,
2015.

[7] Qun Zhang and Abdou Youssef. An approach to math-similarity search. Intelligent
Computer Mathematics. International Conference, CICM, 2014.

[8] Miller B. and Youssef A. Technical aspects of the digital library of mathemati-
cal functions. Annals of Mathematics and Artificial Intelligence 38(1-3), 121136,
2003.

[9] Youssef A. Information search and retrieval of mathematical contents: Issues and
methods. The ISCA 14th Intl Conf. on Intelligent and Adaptive Systems and
Software Engineering (IASSE 2005), 2005.

[10] Jozef Miutka and Leo Galambo. Extending full text search engine for mathemat-
ical content. Towards Digital Mathematics Library., 2008.

50

http://ntcir-math.nii.ac.jp/wp-content/blogs.dir/13/files/2014/02/NTCIR10-math-topics.pdf
http://ntcir-math.nii.ac.jp/wp-content/blogs.dir/13/files/2014/02/NTCIR10-math-topics.pdf
http://ntcir-math.nii.ac.jp/wp-content/blogs.dir/13/files/2014/02/NTCIR10-math-topics.pdf

[11] Petr Sojka and Martin Lka. Indexing and searching mathematics in digital li-
braries. Intelligent Computer Mathematics, 6824:228–243, 2011.

[12] Petr Sojka and Martin Lka. The art of mathematics retrieval. ACM Conference
on Document Engineering, DocEng 2011, 2011.

[13] Martin Lka. Evaluation of mathematics retrieval. Master’s thesis, Masarykova
University, 2013.

[14] P. Pavan Kumar, Arun Agarwal, and Chakravarthy Bhagvati. A structure based
approach for mathematical expression retrieval. Multi-disciplinary Trends in Ar-
tificial Intelligence, 7694:23–34, 2012.

[15] Robert Miner and Rajesh Munavalli. An Approach to Mathematical Search
Through Query Formulation and Data Normalization. Springer Berlin Heidelberg,
2007.

[16] Christopher D. Manning, Prabhakar Paghavan, and Hinrich Schutze. Introduction
to Information Retrieval. Cambridge University Press, 2008.

[17] Muhammad Adeel, Hui Siu Cheung, and Ar Hayat Khiyal. Math go! prototype
of a content based mathematical formula search engine, 2008.

[18] Andrea Asperti, Ferruccio Guidi, Claudio Sacerdoti Coen, Enrico Tassi, and Ste-
fano Zacchiroli. A content based mathematical search engine: whelp. In In:
Post-proceedings of the Types 2004 International Conference, Vol. 3839 of LNCS,
pages 17–32. Springer-Verlag, 2004.

[19] Michael Kohlhase and Ioan A. Sucan. A search engine for mathematical formu-
lae. In Proc. of Artificial Intelligence and Symbolic Computation, number 4120 in
LNAI, pages 241–253. Springer, 2006.

[20] Michael Kohlhase. Mathwebsearch 0.4 a semantic search engine for mathematics.

[21] Michael Kohlhase. Mathwebsearch 0.5: Scaling an open formula search engine.

[22] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (3rd
Edition). Prentice Hall, December 2009.

[23] Peter Graf. Term Indexing. Springer Verlag, 1996.

[24] Yoshinori Hijikata, Hideki Hashimoto, and Shogo Nishida. An investigation of in-
dex formats for the search of mathml objects. In Web Intelligence/IAT Workshops,
pages 244–248. IEEE, 2007.

[25] Yoshinori Hijikata, Hideki Hashimoto, and Shogo Nishida. Search mathematical
formulas by mathematical formulas. Human Interface and the Management of
Information. Designing Information, Symposium on Human Interface, pages 404–
411, 2009.

51

[26] Hiroshi Ichikawa, Taiichi Hashimoto, Takenobu Tokunaga, and Hozumi Tanaka.
New methods of retrieve sentences based on syntactic similarity. IPSJ SIG Tech-
nical Reports, DBS-136, FI-79, pages 39–46, 2005.

[27] Yokoi Keisuke and Aizawa Akiko. An approach to similarity search for mathe-
matical expressions using mathml. Towards a Digital Mathematics Library. Grand
Bend, Ontario, Canada, pages 27–35, 2009.

[28] Thomas Schellenberg, Bo Yuan, and Richard Zanibbi. Layout-based substitu-
tion tree indexing and retrieval for mathematical expressions. Proc. SPIE 8297,
Document Recognition and Retrieval XIX, 82970I, 2012.

[29] David Stalnaker and Richard Zanibbi. Math expression retrieval using an inverted
index over symbol pairs. Proc. SPIE 9402, Document Recognition and Retrieval
XXII, 940207, 2015.

[30] Shahab Kamali and Frank Wm. Tompa. A new mathematics retrieval system.
CIKM, 2010.

[31] Kai Ma, Siu Cheung Hui, and Kuiyu Chang. Feature extraction and clustering-
based retrieval for mathematical formulas. In Software Engineering and Data
Mining (SEDM), 2010 2nd International Conference on, pages 372–377, June
2010.

[32] Cyril Laitang, Mohand Boughanem, and Karen Pinel-Sauvagnat. Xml information
retrieval through tree edit distance and structural summaries. In Information
Retrieval Technology, volume 7097 of Lecture Notes in Computer Science, pages
73–83. Springer Berlin Heidelberg, 2011.

[33] Shahab Kamali and FrankWm. Tompa. Structural similarity search for mathe-
matics retrieval. In Intelligent Computer Mathematics, volume 7961 of Lecture
Notes in Computer Science, pages 246–262. Springer Berlin Heidelberg, 2013.

[34] Richard Zanibbi and Bo Yuan. Keyword and image-based retrieval for mathemat-
ical expressions. Multi-disciplinary Trends in Artificial Intelligence. 6th Interna-
tional Workshop, MIWAI 2012., pages 23–34, 2011.

[35] Li Yu and Richard Zanibbi. Math spotting: Retrieving math in technical doc-
uments using handwritten query images. Document Analysis and Recognition
(ICDAR), pages 446 – 451, 2009.

[36] T. Nguyen, S. Hui, and K. Chang. A lattice-based approach for mathematical
search using formal concept analysis. Expert Systems with Applications, 2012.

[37] Akiko Aizawa, Michael Kohlhase, Iadh Ounis, and Moritz Schubotz. Ntcir-11
math-2 task overview. Proc. of the 11th NTCIR Conference, Tokyo, Japan, 2014.

52

[38] Kamali Shahab and Tompa Frank Wm. Improving mathematics retrieval. Towards
a Digital Mathematics Library. Grand Bend, Ontario, Canada, pages 37–48, 2009.

[39] PhilipN. Klein. Computing the edit-distance between unrooted ordered trees.
volume 1461 of Lecture Notes in Computer Science, pages 91–102. Springer Berlin
Heidelberg, 1998.

[40] J. Roger Hindley. Introduction to Combinators and [Lambda]-Calculus. Cambridge
University Press, 1986.

53

Appendix A

GRAMMAR RULES OF PARSER

doc : tex ’\n’ ;

rel : atom | _REL ;

tex : NULL | term

| tex ’+’ term | tex ’+’

| tex ’-’ term | tex ’-’

| tex _REL tex

| tex _SEP_CLASS tex

| tex _ABOVE tex

| tex _OVER tex

| tex _MODULAR tex

| tex _CHOOSE tex

| tex _STACKREL atom rel tex

| tex _SET_REL atom rel tex

| tex _X_ARROW atom tex

| tex _X_ARROW ’[’ tex ’]’ atom tex ;

term : factor | term factor

| term _TIMES factor | term _DIV factor ;

factor : pack | factor ’!’ | factor script ;

pack : atom

| ’(’ tex ’)’ | ’(’ tex ’]’

| ’[’ tex ’)’ | ’[’ tex ’]’

| _LEFT_CEIL tex _RIGHT_CEIL

| _LEFT_FLOOR tex _RIGHT_FLOOR ;

script

: ’_’ atom | ’^’ atom

| ’_’ atom ’^’ atom

| ’^’ atom ’_’ atom ;

54

atom : NUM | ZERO | ONE | VAR

| FUN_CLASS | SUM_CLASS

| ’{’ tex ’}’

| FRAC__ | _FRAC atom atom

| COMBIN__ | _COMBIN atom atom

| _VECT atom

| _SQRT atom | _SQRT ’[’ tex ’]’ atom | _ROOT atom _OF atom

| _PRIME_VAR

| _DOTS | _PARTIAL | _PI | _INFTY

| _EMPTY | _ANGLE | _PERP | _CIRC

| _PERCENT | _VERT ;

55

Appendix B

LEXER TOKENS OF PARSER

\times { _TIMES }

\otimes { _TIMES }

\ltimes { _TIMES }

\rtimes { _TIMES }

\cdot { _TIMES }

\odot { _TIMES }

\ast { _TIMES }

\over { _OVER }

/* above */

\above { _ABOVE }

/* div */

/ { _DIV }

\div { _DIV }

\divideontimes { _DIV }

/* frac */

\frac { _FRAC }

\dfrac { _FRAC }

\cfrac { _FRAC }

\tfrac { _FRAC }

\frac[]*[0-9][0-9] { FRAC_ }

\dfrac[]*[0-9][0-9] { FRAC_ }

\cfrac[]*[0-9][0-9] { FRAC_ }

\tfrac[]*[0-9][0-9] { FRAC_ }

\left[]*\\lceil { _LEFT_CEIL; }

\left[]*\\lfloor { _LEFT_FLOOR }

\right[]*\\rceil { _RIGHT_CEIL; }

\right[]*\\rfloor { _RIGHT_FLOOR }

/* shorter ceil and floor */

\lceil { _LEFT_CEIL }

\lfloor { _LEFT_FLOOR }

\rceil { _RIGHT_CEIL }

56

\rfloor { _RIGHT_FLOOR }

"|" { _VERT }

"\\|" { _VERT }

\vert { _VERT }

\Vert { _VERT }

\[Aa]rrowvert { _VERT }

\bracevert { _VERT }

\r[vV]ert { _VERT }

\l[vV]ert { _VERT }

\mid { _VERT }

\choose { _CHOOSE }

\brack { _CHOOSE }

\dbinom[]*[0-9][0-9] { COMBIN__ }

\tbinom[]*[0-9][0-9] { COMBIN__ }

\binom[]*[0-9][0-9] { COMBIN__ }

\dbinom { _COMBIN }

\tbinom { _COMBIN }

\binom { _COMBIN }

/* modular operation */

\\pmod { _MODULAR }

\\bmod { _MODULAR }

\\mod { _MODULAR }

/* prime */

"’" { _PRIME_SUP }

\\prime { _PRIME_VAR }

/* sqrt and root */

\\sqrt { _SQRT }

\\root { _ROOT }

\\of { _OF; }

/* vector */

\\vec { _VECT }

\\overleftarrow { _VECT }

57

\\overrightarrow { _VECT }

/* partial */

\\partial { _PARTIAL }

\\nabla { _PARTIAL }

/* PI */

\\pi { _PI }

/* infty */

\\infty { _INFTY }

/* empty */

\\empty { _EMPTY }

\\emptyset { _EMPTY }

\\varnothing { _EMPTY }

/* angle */

\\triangle { _ANGLE }

\\triangledown { _ANGLE }

\\angle { _ANGLE }

\\vartriangle { _ANGLE }

\\vartriangleleft { _ANGLE }

\\vartriangleright { _ANGLE }

\\triangleleft { _ANGLE }

\\triangleright { _ANGLE }

\\measuredangle { _ANGLE }

\\sphericalangle { _ANGLE }

/* perpendicular */

\\perp { _PERP }

\\bot { _PERP }

/* circle */

\\circ { _CIRC }

58

/* percentage */

\\% { _PERCENT }

/* dots */

\\dots { _DOTS }

\.\.\. { _DOTS }

\\ldots { _DOTS }

\\vdots { _DOTS }

\\cdots { _DOTS }

\\ddots { _DOTS }

\\ddot { _DOTS }

\\dddot { _DOTS }

\\ddddot { _DOTS }

\\dotsb { _DOTS }

\\dotsc { _DOTS }

\\dotsi { _DOTS }

\\dotsm { _DOTS }

\\dotso { _DOTS }

\\iddots { _DOTS }

/* equality class */

= { _REL }

:= { _REL }

"<" { _REL }

">" { _REL }

\\Cap { _REL }

\\Cup { _REL }

\\Join { _REL }

\\Prec { _REL }

\\Subset { _REL }

\\Supset { _REL }

\\[dD]oteq { _REL }

\\and { _REL }

\\approx { _REL }

\\approxeq { _REL }

\\asymp { _REL }

\\backepsilon { _REL }

\\backsim { _REL }

\\backsimeq { _REL }

\\bowtie { _REL }

59

\\cap { _REL }

\\circeq { _REL }

\\cong { _REL }

\\cup { _REL }

\\curlyeqprec { _REL }

\\curlyeqsucc { _REL }

\\curlyvee { _REL }

\\curlywedge { _REL }

\\dashv { _REL }

\\dot= { _REL }

\\eqslantgtr { _REL }

\\eqslantless { _REL }

\\equiv { _REL }

\\ge { _REL }

\\geq { _REL }

\\geqq { _REL }

\\geqslant { _REL }

\\gg { _REL }

\\gnapprox { _REL }

\\gnsim { _REL }

\\gt { _REL }

\\gtrapprox { _REL }

\\gtrdot { _REL }

\\gtreqless { _REL }

\\gtreqqless { _REL }

\\gtrless { _REL }

\\gtrsim { _REL }

\\in { _REL }

\\land { _REL }

\\le { _REL }

\\leadsto { _REL }

\\leq { _REL }

\\leqq { _REL }

\\leqslant { _REL }

\\lessapprox { _REL }

\\lessdot { _REL }

\\lesssim { _REL }

\\ll { _REL }

\\lnapprox { _REL }

\\lneq { _REL }

\\lneqq { _REL }

\\lor { _REL }

\\lt { _REL }

60

\\lvertneqq { _REL }

\\ncong { _REL }

\\ne { _REL }

\\neq { _REL }

\\ngeq { _REL }

\\ngeqq { _REL }

\\ngeqslant { _REL }

\\ni { _REL }

\\nleq { _REL }

\\nleqq { _REL }

\\nleqslant { _REL }

\\nless { _REL }

\\not("="|"\equiv"|"\in") { _REL }

\\nparallel { _REL }

\\nprec { _REL }

\\npreceq { _REL }

\\nsim { _REL }

\\nsubseteq { _REL }

\\nsucc { _REL }

\\nsucceq { _REL }

\\nsupseteq { _REL }

\\owns { _REL }

\\parallel { _REL }

\\prec { _REL }

\\preceq { _REL }

\\propto { _REL }

\\sim { _REL }

\\simeq { _REL }

\\sqcap { _REL }

\\sqcup { _REL }

\\sqsubset { _REL }

\\sqsubseteq { _REL }

\\sqsupset { _REL }

\\sqsupseteq { _REL }

\\subset { _REL }

\\subseteq { _REL }

\\subseteqq { _REL }

\\subsetneq { _REL }

\\subsetneqq { _REL }

\\succ { _REL }

\\succapprox { _REL }

\\succcurlyeq { _REL }

\\succeq { _REL }

61

\\succnapprox { _REL }

\\succneqq { _REL }

\\succnsim { _REL }

\\succsim { _REL }

\\supset { _REL }

\\supseteq { _REL }

\\supseteqq { _REL }

\\supsetneq { _REL }

\\supsetneqq { _REL }

\\thickapprox { _REL }

\\thicksim { _REL }

\\trianglelefteq { _REL }

\\triangleq { _REL }

\\trianglerighteq { _REL }

\\unlhd { _REL }

\\unrhd { _REL }

\\varsubsetneq { _REL }

\\varsubsetneqq { _REL }

\\varsupsetneq { _REL }

\\varsupsetneqq { _REL }

\\vee { _REL }

\\veebar { _REL }

\\wedge { _REL }

/* stack above operations */

\\xleftarrow { _X_ARROW }

\\xrightarrow { _X_ARROW }

\\stackrel { _STACKREL }

\\buildrel { _BUILDREL }

\\overset { _SET_REL }

\\underset { _SET_REL }

/* seperation class */

/* table related */

\\\\ { _SEP_CLASS }

\\cr { _SEP_CLASS }

\\newline { _SEP_CLASS }

\\: { _SEP_CLASS }

\\> { _SEP_CLASS }

\\enspace { _SEP_CLASS }

/* -- */

62

, { _SEP_CLASS }

; { _SEP_CLASS }

\colon { _SEP_CLASS }

":" { _SEP_CLASS }

\\\& { _SEP_CLASS }

\\And { _SEP_CLASS }

\\Downarrow { _SEP_CLASS }

\\Leftarrow { _SEP_CLASS }

\\Leftrightarrow { _SEP_CLASS }

\\Lleftarrow { _SEP_CLASS }

\\Longleftarrow { _SEP_CLASS }

\\Longleftrightarrow { _SEP_CLASS }

\\Longrightarrow { _SEP_CLASS }

\\Lsh { _SEP_CLASS }

\\Rightarrow { _SEP_CLASS }

\\Rrightarrow { _SEP_CLASS }

\\Rsh { _SEP_CLASS }

\\Uparrow { _SEP_CLASS }

\\Updownarrow { _SEP_CLASS }

\\atop { _SEP_CLASS }

\\between { _SEP_CLASS }

\\circlearrowleft { _SEP_CLASS }

\\circlearrowright { _SEP_CLASS }

\\curvearrowleft { _SEP_CLASS }

\\curvearrowright { _SEP_CLASS }

\\downarrow { _SEP_CLASS }

\\downdownarrows { _SEP_CLASS }

\\downharpoonleft { _SEP_CLASS }

\\downharpoonright { _SEP_CLASS }

\\eqcirc { _SEP_CLASS }

\\eqsim { _SEP_CLASS }

\\exists { _SEP_CLASS }

\\forall { _SEP_CLASS }

\\frown { _SEP_CLASS }

\\gets { _SEP_CLASS }

\\ggg { _SEP_CLASS }

\\gggtr { _SEP_CLASS }

\\gneq { _SEP_CLASS }

\\gneqq { _SEP_CLASS }

\\gvertneqq { _SEP_CLASS }

\\hookleftarrow { _SEP_CLASS }

\\hookrightarrow { _SEP_CLASS }

\\iff { _SEP_CLASS }

63

\\impliedby { _SEP_CLASS }

\\implies { _SEP_CLASS }

\\leftarrow { _SEP_CLASS }

\\leftarrowtail { _SEP_CLASS }

\\leftharpoondown { _SEP_CLASS }

\\leftharpoonup { _SEP_CLASS }

\\leftleftarrows { _SEP_CLASS }

\\leftrightarrow { _SEP_CLASS }

\\leftrightarrows { _SEP_CLASS }

\\leftrightharpoons { _SEP_CLASS }

\\leftrightsquigarrow { _SEP_CLASS }

\\longleftarrow { _SEP_CLASS }

\\longleftrightarrow { _SEP_CLASS }

\\longmapsto { _SEP_CLASS }

\\longrightarrow { _SEP_CLASS }

\\looparrowleft { _SEP_CLASS }

\\looparrowright { _SEP_CLASS }

\\mapsto { _SEP_CLASS }

\\multimap { _SEP_CLASS }

\\nLeftarrow { _SEP_CLASS }

\\nLeftrightarrow { _SEP_CLASS }

\\nRightarrow { _SEP_CLASS }

\\nearrow { _SEP_CLASS }

\\nexists { _SEP_CLASS }

\\ngtr { _SEP_CLASS }

\\nleftarrow { _SEP_CLASS }

\\nleftrightarrow { _SEP_CLASS }

\\nmid { _SEP_CLASS }

\\nrightarrow { _SEP_CLASS }

\\nwarrow { _SEP_CLASS }

\\precapprox { _SEP_CLASS }

\\preccurlyeq { _SEP_CLASS }

\\precnapprox { _SEP_CLASS }

\\precneqq { _SEP_CLASS }

\\precnsim { _SEP_CLASS }

\\precsim { _SEP_CLASS }

\\qquad { _SEP_CLASS }

\\quad { _SEP_CLASS }

\\rightarrow { _SEP_CLASS }

\\rightarrowtail { _SEP_CLASS }

\\rightharpoondown { _SEP_CLASS }

\\rightharpoonup { _SEP_CLASS }

\\rightleftarrows { _SEP_CLASS }

64

\\rightleftharpoons { _SEP_CLASS }

\\rightrightarrows { _SEP_CLASS }

\\rightsquigarrow { _SEP_CLASS }

\\searrow { _SEP_CLASS }

\\smallfrown { _SEP_CLASS }

\\smallsmile { _SEP_CLASS }

\\swarrow { _SEP_CLASS }

\\to { _SEP_CLASS }

\\uparrow { _SEP_CLASS }

\\updownarrow { _SEP_CLASS }

\\upharpoonleft { _SEP_CLASS }

\\upharpoonright { _SEP_CLASS }

\\upuparrows { _SEP_CLASS }

/* variables */

\\Alpha { VAR }

\\Beta { VAR }

\\Chi { VAR }

\\Delta { VAR }

\\Epsilon { VAR }

\\Eta { VAR }

\\Gamma { VAR }

\\Iota { VAR }

\\Kappa { VAR }

\\Lambda { VAR }

\\Mu { VAR }

\\Nu { VAR }

\\Omega { VAR }

\\Omicron { VAR }

\\Phi { VAR }

\\Pi { VAR }

\\Psi { VAR }

\\Re { VAR }

\\Rho { VAR }

\\Sigma { VAR }

\\Tau { VAR }

\\Theta { VAR }

\\Upsilon { VAR }

\\VarLambda { VAR }

\\VarOmega { VAR }

\\Xi { VAR }

\\Zeta { VAR }

\\aleph { VAR }

65

\\alpha { VAR }

\\amalg { VAR }

\\beta { VAR }

\\beth { VAR }

\\chi { VAR }

\\delta { VAR }

\\ell { VAR }

\\epsilon { VAR }

\\eta { VAR }

\\eth { VAR }

\\gamma { VAR }

\\imath { VAR }

\\iota { VAR }

\\jmath { VAR }

\\kappa { VAR }

\\lambda { VAR }

\\mho { VAR }

\\mu { VAR }

\\nu { VAR }

\\omega { VAR }

\\omicron { VAR }

\\phi { VAR }

\\psi { VAR }

\\rho { VAR }

\\sigma { VAR }

\\tau { VAR }

\\theta { VAR }

\\top { VAR }

\\upsilon { VAR }

\\varDelta { VAR }

\\varGamma { VAR }

\\varPhi { VAR }

\\varPi { VAR }

\\varPsi { VAR }

\\varSigma { VAR }

\\varTheta { VAR }

\\varUpsilon { VAR }

\\varXi { VAR }

\\varepsilon { VAR }

\\varkappa { VAR }

\\varphi { VAR }

\\varpi { VAR }

\\varpropto { VAR }

66

\\varrho { VAR }

\\varsigma { VAR }

\\vartheta { VAR }

\\wr { VAR }

\\xi { VAR }

\\zeta { VAR }

/* functions, auto-generated */

\\Pr { FUN_CLASS }

\\arccos { FUN_CLASS }

\\arcsin { FUN_CLASS }

\\arctan { FUN_CLASS }

\\cos { FUN_CLASS }

\\cosh { FUN_CLASS }

\\cot { FUN_CLASS }

\\coth { FUN_CLASS }

\\csc { FUN_CLASS }

\\deg { FUN_CLASS }

\\det { FUN_CLASS }

\\dim { FUN_CLASS }

\\exp { FUN_CLASS }

\\gcd { FUN_CLASS }

\\hom { FUN_CLASS }

\\ker { FUN_CLASS }

\\lg { FUN_CLASS }

\\ln { FUN_CLASS }

\\log { FUN_CLASS }

\\max { FUN_CLASS }

\\min { FUN_CLASS }

\\sec { FUN_CLASS }

\\sin { FUN_CLASS }

\\sinh { FUN_CLASS }

\\tan { FUN_CLASS }

\\tanh { FUN_CLASS }

/* not LaTeX standard commands */

\\sgn { FUN_CLASS }

\\signum { FUN_CLASS }

\\sign { FUN_CLASS }

/* sum class, auto-generated */

\\arg { SUM_CLASS }

67

\\bigcap { SUM_CLASS }

\\bigcup { SUM_CLASS }

\\bigcirc { SUM_CLASS }

\\bigodot { SUM_CLASS }

\\bigoplus { SUM_CLASS }

\\bigotimes { SUM_CLASS }

\\bigsqcup { SUM_CLASS }

\\bigtriangledown { SUM_CLASS }

\\bigtriangleup { SUM_CLASS }

\\biguplus { SUM_CLASS }

\\bigvee { SUM_CLASS }

\\bigwedge { SUM_CLASS }

\\coprod { SUM_CLASS }

\\idotsint { SUM_CLASS }

\\int { SUM_CLASS }

\\iint { SUM_CLASS }

\\iiint { SUM_CLASS }

\\iiiint { SUM_CLASS }

\\intop { SUM_CLASS }

\\inf { SUM_CLASS }

\\injlim { SUM_CLASS }

\\smallint { SUM_CLASS }

\\sup { SUM_CLASS }

\\varinjlim { SUM_CLASS }

\\varprojlim { SUM_CLASS }

\\lim { SUM_CLASS }

\\liminf { SUM_CLASS }

\\limsup { SUM_CLASS }

\\varliminf { SUM_CLASS }

\\varlimsup { SUM_CLASS }

\\oint { SUM_CLASS }

\\prod { SUM_CLASS }

\\projlim { SUM_CLASS }

\\sum { SUM_CLASS }

68

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	1 Introduction
	1.1 Math IR Domains
	1.2 Issues in Measuring Similarity
	1.3 Contribution Summary

	2 Related Work
	2.1 Text-Based Methods
	2.2 Structure-Based Methods
	2.3 Other Related Work
	2.4 Performance Review

	3 Methodology
	3.1 Intuitions
	3.1.1 Commutative Immunity
	3.1.2 Sub-Structure Query Ability
	3.1.3 Index and Search Properties

	3.2 Structure Similarity
	3.2.1 Definitions
	3.2.1.1 Formula Tree
	3.2.1.2 Formula Subtree
	3.2.1.3 Leaf-Root Path Set
	3.2.1.4 Index

	3.2.2 Search Method
	3.2.3 Substructure Matching
	3.2.3.1 Observation #1
	3.2.3.2 Observation #2
	3.2.3.3 Observation #3

	3.2.4 Interpretation
	3.2.5 The Decompose-and-Match Algorithm

	3.3 Symbolic Similarity
	3.3.1 Ranking Constrains
	3.3.2 The Mark-and-Cross Algorithm

	3.4 Combine The Two
	3.4.1 Relaxed Structure Match
	3.4.2 Matching-Depth
	3.4.3 Matching-Ratio
	3.4.4 Final Ranking Schema
	3.4.5 Illustrated by an Example

	4 Implementation and Evaluation
	4.1 System Overview
	4.2 Implementation
	4.2.1 Crawler
	4.2.2 Parser
	4.2.3 Index
	4.2.4 Search Program
	4.2.5 Web Front-End

	4.3 Evaluation
	4.3.1 Dataset and Index
	4.3.2 Relevance Judgement
	4.3.3 Results

	5 Conclusion and Future Work
	5.1 Summary and Conclusion
	5.2 Current Problems
	5.3 Future Work

	References
	A Grammar rules of parser
	B Lexer tokens of parser

